Amplification is the process of increasing the power of an ac signal. The circuits that perform this are called amplifiers.
All Amplifiers have 3 fundamental properties.

- Input Impedance
- Output Impedance
- Gain

The general model shows these properties

The General Amplifier Model

Amplifier Gain is a multiplier that exists between the circuit's input and output.(i.e. If we have a gain of 100 and we have 1 unit input, then the output will be 100 units under normal operating conditions.)

Input Impedance is the load that the amplifier presents to it's signal source.

Output Impedance is the source resistance that the amplifier presents to its load.

Amplifier Gain

There are three types of gain:

- Voltage Gain \mathbf{A}_{v}
- Current Gain $\mathbf{A}_{\mathbf{I}}$
- Power Gain $\mathbf{A}_{\mathbf{P}}$

All amplifiers provide some power gain however not all amplifiers are designed for this purpose.

Voltage amplifiers are designed to provide a certain value of A_{V}. The fact that they provide some power gain is usually a secondary consideration.

Current amplifiers are designed to provide a certain value of A_{i}.
Power amplifiers are designed to provide a certain value of A_{p}.
The type of amplifier used in a given application depends on the type of gain required.

Gain As a Ratio (Often Called Ordinary Gain)
Gain is traditionally defined as the ratio of a circuit's output to its corresponding input. (i.e. Voltage gain is the ratio of ac output voltage input voltage)

$$
\mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {in }}} \quad \mathrm{V}_{\text {out }}=\mathrm{A}_{\mathrm{v}} \mathrm{~V}_{\text {in }}
$$

Current and Power Gain

These are also defined as ratios

$$
\mathrm{A}_{i}=\frac{i_{\text {out }}}{i_{\text {in }}}
$$

$$
\mathrm{A}_{P}=\frac{p_{\text {out }}}{p_{\text {in }}}
$$

Example 8-1 \& 8-2

The General Amplifier Model

In the model shown below, the diamond shape represents $\mathrm{v}_{\text {out }}$ and it has a value of $A_{v} v_{\text {in }}$.

The General Amplifier Model

To the general model above, we have added a signal source that consists of V_{S} and R_{s}. These will work in conjunction with Z_{in}.

On the output side, we have added R_{L}, which will work in conjunction with $Z_{\text {out }}$.

Input Impedance ($Z_{\text {in }}$)

When the amplifier is connected to a signal source the source sees the input impedance as its load. In our example, this value is $1.5 \mathrm{k} \Omega$ This means that the signal source is in series with R_{s} and Z_{in}.

The voltage we define as $v_{\text {in }}$ is the voltage that the amplifier actually sees. This voltage appears across $Z_{i n}$.

The input circuit is actually a simple voltage divider. The value of $v_{\text {in }}$ is a portion of the input voltage and is given by:

Input Circuit Only
Examples 8.3 and 8.4 show the effects of R_{s} and $\mathrm{Z}_{\text {in. }}$

Output Impedance ($Z_{\text {ou }}$)

When a load is connected to an amplifier, the amplifier acts as a source for that load. As with any source, there is a measurable value of source resistance. This is the output impedance of the amplifier.

If $\mathrm{Z}_{\text {out }}$ is 200Ω, then the load sees the amplifier as a voltage source with an internal resistance of 200Ω..

The output circuit is a simple voltage divider. The value of v_{L} is a portion of the output voltage and is given by:

Output Circuit Only

Example 8.5 shows the effect of output impedance.

The Combined Effects of the Input \& Output Circuits

 The combined effect of both the input and output circuitry can significantly reduce the effective gain of an amplifier. Consider this circuit:(1) Find $v_{\text {in }}$

$$
\begin{aligned}
v_{\mathrm{in}} & =v_{\mathrm{s}} \frac{\mathrm{Z}_{\mathrm{in}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{Z}_{\mathrm{in}}} \\
& =\left(15 \mathrm{mV}_{\mathrm{ac}} \frac{980 \Omega}{1 \mathrm{k} \Omega}\right. \\
& =14.7 \mathrm{mV}_{\mathrm{ac}}
\end{aligned}
$$

(2) Find $v_{\text {out }}$

$$
\begin{aligned}
V_{\text {out }} & =\mathrm{A}_{V} v_{\mathrm{in}} \\
& =(340) 14.7 \mathrm{mV}_{\mathrm{ac}} \\
& =5 \mathrm{~V}_{\mathrm{ac}}
\end{aligned}
$$

3 Find ν_{L}

$$
\begin{aligned}
v_{L} & =v_{\text {out }} \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{Z}_{\text {out }}+\mathrm{R}_{\mathrm{L}}} \\
& =\left(5 \mathrm{~V}_{\mathrm{ac}} \frac{1.2 \mathrm{k} \Omega}{1.45 \mathrm{k} \Omega}\right. \\
& =4.14 \mathrm{~V}_{\mathrm{ac}}
\end{aligned}
$$

$$
v_{L}=v_{\text {out }} \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{Z}_{\text {out }}+\mathrm{R}_{\mathrm{L}}}
$$

The input and output circuits have reduced the gain from 340 to an effective value of 276 .
Generally, we want the effective value to be as high as possible (or be as close to 340 as possible in our example)
We can accomplish this by:

- increasing the value of $Z_{i n}$
- decreasing the value of $Z_{\text {out }}$

In this example, we are essentially using the same circuit as before. Only $\mathrm{Z}_{\text {in }}$ and $\mathrm{Z}_{\text {out }}$ have changed.

- Z_{in} is much higher
- $\mathrm{Z}_{\text {out }}$ is much lower

> (1) Find $v_{\text {in }}$
> $v_{\text {in }}=v_{\mathrm{s}} \frac{\mathrm{Z}_{\text {in }}}{\mathrm{R}_{\mathrm{s}}+\mathrm{Z}_{\mathrm{in}}}$
> $\quad=\left(15 \mathrm{mV}_{\mathrm{ac}}\right) \frac{8 \mathrm{k} \Omega}{8.02 \mathrm{k} \Omega}$
> $\quad=14.96 \mathrm{mV}_{\mathrm{ac}}$
(2) Find $v_{\text {out }}$
$v_{\text {out }}=\mathrm{A}_{V} v_{\text {in }}$
(3) Find v_{L}
$v_{L}=v_{\text {out }} \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{Z}_{\text {out }}+\mathrm{R}_{\mathrm{L}}}$
$\begin{array}{ll}=(340) 14.96 \mathrm{mV}_{\mathrm{ac}} & =\left(5.1 \mathrm{~V}_{\mathrm{ac}} \frac{1.2 \mathrm{k} \Omega}{1.22 \mathrm{k} \Omega}\right. \\ =5.1 \mathrm{~V}_{\mathrm{ac}} & =5 \mathrm{~V}_{\mathrm{ac}}\end{array}$
(4) Find effective A_{v}

$$
\begin{aligned}
\mathrm{A}_{\mathrm{V}} & =\frac{v_{L}}{v_{S}} \\
& =\frac{5 \mathrm{~V}_{\mathrm{ac}}}{15 \mathrm{mV}_{\mathrm{ac}}} \\
& =333.3
\end{aligned}
$$

As you can see, the effective gain has increased significantly by increasing the value of $Z_{i n}$ and reducing the value of $Z_{\text {out }}$

In practical circuits, little can be done to change the resistance of a given signal source or load. We can, however, effect the value of $\mathrm{Z}_{\text {in }}$ and $\mathrm{Z}_{\text {out }}$ This is done by:

- Our choice of active components
- The value of components we use

The type of biasing circuit we use.

The Ideal Voltage Amplifier

In a perfect world, the ideal voltage amplifier would have:

- Infinite Gain (if needed)
- Infinite input impedance
- Zero output impedance

Infinite Gain - This means that the amplifier could produce any value of gain that we need, no matter how high the value. In reality gain $\left(\mathrm{A}_{\mathrm{v}}\right)$ is limited in part, by the active components (the transistor)

Infinite Input Impedance - If this could happen, then there would be

Ideal Input Circuit no current in the input circuit and no voltage would be dropped across
R_{s}. This means that all the input
voltage appears across $Z_{i n}$. This
means that the amplifier sees all the input voltage with no losses.

Zero Output Impedance - If this were possible, there would be no voltage divider in the output circuit. This means that all of $\boldsymbol{v}_{\text {out }}$ would appear $\operatorname{across} \mathrm{R}_{\mathrm{L}}$ with no losses across $\mathrm{Z}_{\text {out }}$.

As you can see, our ideal amplifier has no losses at the input. The input sees all of the applied input voltage. At the output, there are also no losses. All of $\mathrm{v}_{\text {out }}$ appears across the load. In an ideal amp, the gain of the amplifier (A) and the effective gain are the same, since there are no losses.

The Real World

The value of $\mathrm{Z}_{\text {in }}=\infty \Omega$ and $\mathrm{Z}_{\text {out }}=0 \Omega$ have not been achieved in practical circuits, but we can get reasonably close by proper circuit design. In the circuit shown, Z_{in} is $100 \mathrm{k} \Omega$. When compared to R_{s} of 20Ω, most of V_{s} will appear across Z_{in}. This means that the losses are very low on the input side of the circuit.

Amplifier Model Optimized for Maximum Effective Gain On the output side, $\mathrm{Z}_{\text {out }}$ is only 3Ω. This again means the the output losses are very low since most of $\mathrm{V}_{\text {out }}$ is dropped across R_{L} and very little is lost across $\mathrm{Z}_{\text {out }}$.

Gain

Earlier in this notepak, we discussed gain. We said that gain is traditionally defined as the ratio of a circuit's output to its corresponding input. Further, we said that there are three types of gain:

-	Voltage Gain
-	\mathbf{A}_{V}
-	
Powrrent Gain	\mathbf{A}_{I}
-	

Where gain is defined as a simple ratio - we called it ordinarily gain.

If you were a look at the specifications for an amplifier, you would often find its voltage gain and/or its power gain values expressed in decibel form.

A decibel (dB) is a logarithmic unit used to express the ratio of one value to another. Using the decibel method allows us to easily represent very large gain values as relatively small numbers. As an example, a power gain of $1,000,000$ is expressed as 60 dB .

dB Power Gain

The dB power gain of an amplifier is the ratio of output power to input power, equal to 10 times the common log of that ratio.

This simply means that the dB power gain is 10 times the log of the ordinary power gain.

$$
\mathrm{A}_{\mathrm{p}(\mathrm{~dB})}=10 \log \mathrm{~A}_{\mathrm{p}} \quad \underline{o r} \quad \mathrm{~A}_{\mathrm{p}(\mathrm{~dB})}=10 \log \frac{P_{\text {out }}}{P_{\text {in }}}
$$

Example 8.7 finds the decibel power gain of an amplifier

page 2-10

Converting dB Power Gain to Ordinary Gain

The formula below will convert a decibel power gain back to an ordinary gain.

$$
A_{p}=\log ^{-1} \frac{A_{p(d B)}}{10}
$$

This formula says that the ordinary gain is the inverse \log of the decibel power gain divided by 10 .

Example 8.8 does this conversion.
Example 8.9 demonstrates how to find the output power when the input power and the dB power gain are known.

Example 8-10 demonstrates how to find the input power when the output power and the dB power gain are known.

Positive Versus Negative dB Values

If you compare the results of examples 8.9 and 8.10 , we can come to some very important conclusions regarding the use of dB values.

1) Positive $d B$ values represent a power gain. Negative dB values represent a power loss.
2) Positive and negative decibels of equal magnitude represent reciprocal gains and losses.
A +3 dB gain causes power to double, while a - $\mathbf{3} \mathbf{d B}$ gain, causes power to be cut in half.

Examples Of Equal Positive And Negative dB Values

dB Value	Gain	dB Value	Loss
3	2	-3	$1 / 2$
6	4	-6	$1 / 4$
12	16	-12	$1 / 16$
20	100	-20	$1 / 100$

The Advantages Of Using Decibels

1) One of the reasons that dB values so are commonly used is the fact that the equivalent $(+)$ and $(-) \mathrm{dB}$ values represent reciprocal gains and losses.

A gain of $+3 d \boldsymbol{B}$ indicates that the power has doubled A gain of -3dB indicates that the power has decreased to half
2) dB gains are additive. In multistage amplifiers, the total gain of the complete amplifier is equal to the some of the individual amplifier dB gains.

The dBm Reference

Often, power ratings are listed on specification sheets as dBm values. For example, an amplifier may be listed as having a maximum output power of 50 dBm . The reading tells you that the maximum output power from the amplifier is 50 dB above 1 mW .

Power, measured in dBm ., is found as:

$$
P_{\mathrm{dBm}}=10 \log \frac{P}{1 \mathrm{~mW}}
$$

What does this mean?
Up to this point, we have discussed dB power gains and losses. If an amplifier has a 3 dB gain, we know that the power doubles. But what is the actual power? We have no way of knowing, simply because we have no idea what the input level is.

$d B m$ values represent actual power levels.

$d \boldsymbol{B}$ values represent actual power ratios

Examples 8.11 and 8.12 illustrate this point.

dB Voltage Gain

The dB voltage gain of an amplifier is found as:

$$
\mathbf{A}_{\mathrm{V}(\mathrm{~dB})}=20 \log \mathrm{~A}_{\mathrm{V}} \quad \underline{\text { or }} \quad \mathrm{A}_{\mathrm{V}(\mathrm{~dB})}=20 \log \frac{v_{\text {out }}}{v_{\text {in }}}
$$

The dB voltage gain uses a multiplier of 20 (in place of the 10) when calculating the dB voltage gain.

Example 8.13 calculates dB voltage gain

Converting dB Voltage Gain to Ordinary Gain

The formula below will convert a decibel voltage gain back to an ordinary gain.

$$
\mathbf{A}_{\mathrm{V}}=\log ^{-1} \frac{\mathbf{A}_{\mathrm{V}(\mathrm{~dB})}}{20}
$$

Example 8.14 demonstrates this.
Negative dB voltage values indicate a voltage loss
Example 8.15 demonstrates this
Summary Decibel (dB) Characteristics

1) Decibels are a logarithmic representations of gain values.
2) Decibel power gain is found as $\mathbf{1 0} \log \mathbf{A}_{P}$
3) Decibel voltage gain is found as $20 \log \mathbf{A}_{v}$
4) Decibel gains are additive.
5) When A_{V} changes by a given number of decibels, A_{P} changes by the same number of decibels.
