The dc Load Line

The DC load line is a graph that represents all the possible combinations of I_{C} and $V_{C E}$ for a given amplifier.

To illustrate, look at Figure 1. This is the circuit we used earlier in the notes to explain the three regions of operation namely, cutoff, active, and saturation.

The Cutoff Region

In figure 1 , the base current $\left(I_{B}\right)$ is 0 . This means that the collector current $\left(\mathrm{I}_{\mathrm{C}}\right)$ should also be $0 . \mathrm{V}_{\mathrm{CE}}$ would be approximately 12 V . If we were to graph V_{CE} vs. I_{C}, we would have

Figure 1 Collector to Emitter is like an open switch point 1 on a graph.(See Fig. 4). This point is called $\mathrm{V}_{\mathrm{CE} \text { (off) }}$.

The Saturation Region

Figure 2 represents the opposite extreme. Here, the transistor is in saturation and the collector and emitter appear like a closed switch. The value of V_{CE} is close to 0 and the value of I_{C} is that its maximum. The value of I_{C} is limited by the resistance in the circuit and can be determined by.

$$
I_{C(s a y)}=\frac{V_{c c}}{R_{c}}=6 \mathrm{~mA}
$$

This current is called the saturation current $\mathrm{I}_{\mathrm{C}(\mathrm{sat})}$. This gives us point 2 on the graph shown in Figure 4.

Figure 2 Collector to Emitter is like a closed switch

The dc Load Line

 The Active RegionWe know that the active region is anywhere between the two extremes of cutoff and saturation.

In this region, we know that the value of I_{C} is determined by $\beta \mathrm{I}_{\mathrm{B}}$.

Figure 3 Collector current is controlled by base current

$$
\begin{aligned}
& I_{B}=10 \mu \mathrm{~A}-----I_{C}=1.2 \mathrm{~mA}-----V_{C E}=9.6 \mathrm{~V} \\
& I_{B}=25 \mu \mathrm{~A}----I_{C}=3.0 \mathrm{~mA}----V_{C E}=6.0 \mathrm{~V} \\
& I_{B}=40 \mu \mathrm{~A}----I_{C}=4.8 \mathrm{~mA}---V_{C E}=2.4 \mathrm{~V}
\end{aligned}
$$

Figure 3 shows three values of I_{B} in the active region. It also shows the value of I_{C} and V_{CE} for these three values. When these values of I_{C} and V_{CE} are plotted in Figure 4 , we can see that a line can be drawn through all the points. This line is called the load line and it represents all the combinations of I_{C} and V_{CE} for this particular transistor circuit.

The Q Point

The main purpose of a voltage amplifier is to amplify an incoming AC signal. A quiescent amplifier is one that has no ac signal applied and therefore has constant dc values of I_{C} and V_{CE}. The amplifier is at rest.

The Q point is defined as a point on the dc loadline that indicates the
 values of I_{C} and $V_{C E}$ for an amplifier at rest. Ideally, we want the Q point to reside at the center of the load line. For figure 3, the amplifier is midpoint biased when I_{C} is 3 mA .

When you have a centred Q point, V_{CE} is half the value of V_{CC}, and I_{C} is half the value of $\mathrm{I}_{\mathrm{C}(\mathrm{sat})}$. This is illustrated in Figure 4. As you can see, the centred Q point provides values of the I_{C} and $V_{C E}$ that are one-half their maximum possible values. When the circuit is designed to have a centred Q point, the amplifier is said to be midpoint biased.
Midpoint biasing allows optimum ac operation of the amplifier. This point is illustrated in Figure 5.

When an ac signal is applied to the base of the transistor, I_{C} and V_{CE} both vary around their Q point values.
When the Q point is centred, I_{C} and V_{CE} can both make the maximum possible transitions above and below their initial dc values.

$\begin{array}{lll}0 & \frac{1}{2} \mathbf{V}_{\mathrm{CC}} & \mathbf{V}_{\text {CE(ff) }}=\mathbf{V}_{\mathrm{CC}}\end{array}$
Figure 5 Optimum Amplifier Operation

See Example 7.1 and 7.2 in the text.

Creating a Stable Q Point - Bias Circuit Types

For our amplifier to work properly, it is essential to have a Q Point that is in the center of the load line. There are several different circuits that we can use to achieve this.

Base Bias

Base bias or fixed bias is an adaptation of the circuit we used in Figure 3. Instead of using two supplies, we use only one. The base voltage (and current) is supplied through R_{B}. The value of I_{C} is simply $\beta \mathrm{I}_{B}$ when the transistor is operating in the active region.
 A typical base bias circuit

If we use the 2 N 3904 transistor, we know β can vary anywhere from 100 to 300 . Unfortunately this also means that I_{C} will vary widely depending on which transistor we use. This means the base bias will provide us with an unstable Q point because we cannot predict where on the load line it will be. It is limited to switching operations and is not widely used for amplifiers.

Circuit Analysis

Our purpose is find the Q point for this amplifier. We can find I_{B} easily since it is the current through R_{B}. The voltages on each side of R_{B} are shown in Fig. 7.

Note that the voltage from base to emitter is 0.7 V . We know that the voltage across a forward biased Silicon diode is approx. 0.7 V . Figure 8 shows the base-emitter diode. Since it is forward biased in the circuit shown, then the voltage across it is 0.7 V . We know that the emitter end of the diode is at ground or 0 volts. Then the base end of the diode must be at +0.7 V . Since the base is connected directly to the bottom of R_{B}, this makes the bottom of R_{B} at +0.7 V .
 A typical base bias circuit

Figure 8 The forward biased base-emitter junction

Calculating I_{B} is then:

$$
\mathrm{I}_{\mathrm{B}}=\frac{\mathbf{V}_{\mathrm{CC}}-\mathbf{V}_{\mathrm{BE}}}{\mathbf{R}_{\mathrm{B}}}
$$

$$
=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{680 \mathrm{k} \Omega}=\frac{19.3 \mathrm{~V}}{680 \mathrm{k} \Omega}=28.38 \mu \mathrm{~A}
$$

Now find I_{C}

$$
\mathbf{I}_{\mathrm{CQ}}=\mathbf{h}_{\mathrm{FE}} \mathbf{I}_{\mathrm{B}}
$$

$$
\begin{aligned}
& =170(28.38 \mu \mathrm{~A}) \\
& =4.82 \mathrm{~mA}
\end{aligned}
$$

Note I_{C} and I_{CQ} are the same thing here. I_{CQ} means that this is the quiescent value of I_{C}

Now find $V_{C E} \quad \mathbf{V}_{\mathrm{CEQ}}=\mathbf{V}_{\mathrm{CC}}-\mathbf{I}_{\mathrm{CQ}} \mathbf{R}_{\mathrm{C}}$

$$
\begin{aligned}
& =20 \mathrm{~V}-(4.82 \mathrm{~mA}(2 \mathrm{k} \Omega)) \\
& =20 \mathrm{~V}-9.64 \mathrm{~V} \\
& =10.36 \mathrm{~V}
\end{aligned}
$$

Note V_{CE} and $\mathrm{V}_{\text {CEQ }}$ are the same thing here. $\mathrm{V}_{\text {CEQ }}$ means that this is the quiescent value of V_{CE}

Now we know the quiescent value of I_{C} and V_{CE}. These are now the values of $\mathrm{V}_{\mathrm{CEQ}}$ and I_{CQ} above. These values represent the Q point of the circuit.

Now we need to determine if the circuit is midpoint biased.
Find the ends of the load line:

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{C} \text { (sat) }}=\frac{\mathbf{V}_{\mathrm{CC}}}{\mathbf{R}_{\mathrm{C}}} \\
& \mathbf{V}_{\mathrm{CE}(\text { (fif) }}=\mathbf{V}_{\mathrm{CC}} \\
& =20 \mathrm{~V} \\
& =\frac{20 \mathrm{~V}}{2 \mathrm{k} \Omega}=10 \mathrm{~mA}
\end{aligned}
$$

Using the values for the ends of the load line, plot them as shown below. Connect these ends with a straight line.

The midpoint is at $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{CQ}}=5 \mathrm{~mA}$
When we plot the actual values of $\mathrm{V}_{\mathrm{CE}}=10.36 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{CQ}}=4.82 \mathrm{~mA}$, we can see that this circuit is midpoint biased.

Q-Point Shift

Our amplifier circuit above is midpoint biased because the value of h_{FE} is 170 .

We know that h_{FE} can vary with temperature. This means that any change in temperature will cause the Q point to shift.

If the temperature increases, then h_{FE} will increase. This in turn will cause the value of I_{c} to increase. This will further cause the value of V_{CE} to decrease. This will cause the Q point to move on the load line. The circuit will no longer be mid point biased. Another problem exists with base biased circuits. We know that the 2 N 3904 can have an h_{FE} of between $100 \& 300$ at $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$.

This circuit requires an $h_{\text {FE }}$ of 170 to be midpoint biased. In a production situation, we cannot guarantee a constant value of h_{FE}. This means the Q point will vary widely. This is another reason that this circuit is not used widely for amplifiers that require a constant Q point.

Emitter Bias

Emitter bias will provide us with a stable Q point.

This is because the value of I_{C} does not depend on β of the transistor.

Emitter bias was commonly used in stereo systems as a voltage amplifier.

As you can see in Figure 10, it requires a bipolar power supply.

Figure 10 Emitter Bias
Note it needs a negative supply voltage

Voltage Divider Bias

Voltage divider bias or Universal bias is the most common dc biasing method mainly because of its stable Q point

It uses a simple voltage divider in the base circuit to provide a set value of V_{B}.

The collector current I_{C}, is controlled solely by the emitter resistor R_{E}. This means that I_{C} is relatively independent of the transistors current gain.

Voltage Divider Bias
Voltage divider bias or Universal bias is the most common dc biasing method mainly because of its stable Q point. It uses a simple voltage divider is the base circuit to provide a set value of V_{B}.If we ignore the effects of $R_{\text {base }}$ for the moment, the value of V_{B} is found as:

$$
\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

$$
=15 \mathrm{~V} \frac{1.8 \mathrm{k} \Omega}{11.8 \mathrm{k} \Omega}=2.29 \mathrm{~V}
$$

V_{E} can be found as $V_{E}=V_{B}-0.7 \mathrm{~V}$

$$
=2.29 \mathrm{~V}-0.7 \mathrm{~V}
$$

Now find I_{E}

Find I_{B} using the value of I_{E}
Now we assume that $\mathrm{I}_{\mathrm{CQ}}=\mathrm{I}_{\mathrm{E}}$

$$
\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{~h}_{\mathrm{FE}}+1}
$$

$$
=\frac{6.69 \mathrm{~mA}}{201}=33.28 \mu \mathrm{~A}
$$

Midpoint bias is at $1 / 2 \mathrm{~V}_{\mathrm{CC}}(7.5 \mathrm{~V})$ This circuit is close at 6.79 V Similar examples are 7.7 and 7.8 in the text

© $\frac{\text { Electronic Fundorm }}{\text { Introduction to dc Biasing }}$

The Effects Of Transistor Loading

The calculation in example on page 1-8 will not give us exact results, however they usually will be reasonably close. The problem here is that each analysis begins with an assumption, that is not completely correct. The problem is with the voltage value for V_{B}.
Figure 12 shows just the part of the circuit required to produce the voltage V_{B}. We calculated this voltage to be: $V_{B}=V_{C C} \frac{R_{2}}{R_{1}+R_{2}}$

$$
=15 \mathrm{~V} \frac{1.8 \mathrm{k} \Omega}{11.8 \mathrm{k} \Omega}=2.29 \mathrm{~V}
$$

This value of voltage will exist only if $\underline{I}_{\underline{B}}$ is zero. We know that in order for a transistor to operate in the active region, there must be a small base
Fig. 12 (current (see Figure 13) In our previous example, the value of I_{B} was $33.28 \mu \mathrm{~A}$. As soon as we draw any current from the point at V_{B}, we "load down" the circuit and the voltage V_{B} will drop to a value of less than 2.29 V .

As I_{B} increases, the loading effect increases, and the value of V_{B} will drop further. As you can see, as I_{B} increases, more and more error is introduced in our original calculation, for V_{B}.

The value of I_{B}. is dependent on the value of $\boldsymbol{h}_{\mathrm{FE}}$ for our transistor. As the value of $\boldsymbol{h}_{\mathrm{FE}}$ increases, the value of I_{B} will decrease.

Fig. 13 - with the transistor connected, the base current will cause the calculated voltage to drop.

We need a Rule

We now know that, as the base current increases, more and more error is introduced into our calculation for the value of V_{B}.

When will there be too much error? We need a rule to follow that will help us to compensate for the error.

Before defining the rule we need to add another piece to the puzzle.

Determining the value of $\boldsymbol{R}_{\text {base }}$

 What is $\boldsymbol{R}_{\text {base }}$? This is the resistance that the current I_{B} sees as it looks into the base of out transistor. (See Fig. 14 a) It sees the emitter resistance $\mathrm{R}_{\mathrm{F}_{1}}$ magnified by the value of value of $h_{\text {FE }}$. (See Fig. 14 b).

Fig 14 (a)

Fig 14 (b)

The h_{FE} of the transistor has a large effect on the value of $h_{\mathrm{FE}} \mathrm{R}_{\mathrm{E} .}$ If h_{FE} is a low value, then $h_{\mathrm{FE}} \mathrm{R}_{\mathrm{E}}$ will have a relatively low value. Since the base current increases as $h_{\mathrm{FE}} \mathrm{R}_{\mathrm{E}}$ decreases, then we can use the value of $h_{\mathrm{FE}} \mathrm{R}_{\mathrm{E}}$ to determine our rule.

How much error is acceptable? Our rule of thumb is simple. If $h_{\mathrm{FE}} \mathrm{R}_{\mathrm{E}}$ is greater or equal to $10 \mathrm{R}_{2}$ then it is large enough to be ignored. If it is smaller than $10 \mathrm{R}_{2}$, then we will use an alternative approach to analyzing the circuit. This will be described shortly.

The Rule for Finding V_{B}

(3) Find $\mathrm{R}_{\text {base }}$

$$
\mathrm{R}_{\text {base }}=\mathrm{h}_{\mathrm{FE}} \mathrm{R}_{\mathrm{E}}
$$

(2) Find $10 \mathrm{R}_{2}$ by simply multiplying the ohmic value of R_{2} by 10
(3) Compare the two values $\left(\mathrm{R}_{\text {base }}\right.$ and $\left.10 \mathrm{R}_{2}\right)$

If $\mathbf{R}_{\text {base }}$ is greater or equal to $\mathbf{1 0 R}_{2}$-- ignore it.
It will not introduce a significant error in our calculations.
If $\mathbf{R}_{\text {base }}$ is smaller than $10 R_{2}$ then: -- use the Thevenin alternative
See the appendix at the end of this notepak for a description of Thevenin's Theorem as it relates to this alternative solution

The Thevenin Alternative Approach

The Thevenin alternative approach, will provide more exact values for I_{CQ} and $\mathrm{V}_{\text {CEQ. }}$. This is because it will takes into account the loading effect caused by the transistor base current I_{B}.
(3) Find the Thevenin voltage

$$
\mathbf{V}_{\mathrm{TH}}=\mathbf{V}_{\mathrm{CC}} \frac{\mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}}
$$

(2) Find the Thevenin resistance $\mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{1} \| \mathbf{R}_{2}$
(3) Find I_{CQ} using this formula

$$
\mathbf{I}_{\mathrm{CQ}}=\frac{\mathbf{V}_{\mathrm{TH}}-\mathbf{V}_{\mathrm{BE}}}{\frac{\mathbf{R}_{\mathrm{TH}}}{\boldsymbol{h}_{\mathrm{FE}}}+\mathbf{R}_{\mathrm{E}}}
$$

(4) Find $\mathrm{V}_{\text {CEQ }}$ in the normal way $\mathrm{V}_{\mathrm{CEQ}}=\mathbf{V}_{\mathrm{CC}}-\mathbf{I}_{\mathrm{CQ}}\left(\mathbf{R}_{\mathrm{C}}+\mathbf{R}_{\mathrm{E}}\right)$

Example where $\mathbf{R}_{\text {basece }}$ can be ignored
Find the values of I_{CQ} and $\mathrm{V}_{\mathrm{CEQ}}$ for the following circuit.
Is the circuit mid-point biased?
Find $\mathrm{R}_{\text {base }}$

$$
\begin{aligned}
\mathrm{R}_{\text {base }} & =\mathrm{h}_{\mathrm{FE}} \mathrm{R}_{\mathrm{E}} \\
& =200(240 \Omega) \\
& =48 \mathrm{k} \Omega
\end{aligned}
$$

Find $10 \mathrm{R}_{2}$

$$
\begin{aligned}
10 \mathrm{R}_{2} & =10(1.8 \mathrm{k} \Omega) \\
& =18 \mathrm{k} \Omega
\end{aligned}
$$

Since $48 \mathrm{k} \Omega$ is much larger than $18 \mathrm{k} \Omega$ we can ignore the effects of $\mathrm{R}_{\text {base }}$

Find $\mathrm{V}_{\mathrm{B}} \quad \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

$$
\begin{aligned}
& =15 \mathrm{~V} \frac{1.8 \mathrm{k} \Omega}{11.8 \mathrm{k} \Omega} \\
& =2.29 \mathrm{~V}
\end{aligned}
$$

Find $V_{E} \quad V_{E}=V_{B}-0.7 \mathrm{~V}$

$$
\begin{aligned}
& =2.29 \mathrm{~V}-0.7 \mathrm{~V} \\
& =1.59 \mathrm{~V}
\end{aligned}
$$

Find $\begin{aligned} \mathrm{I}_{\mathrm{E}} \quad \mathrm{I}_{\mathrm{E}} & =\frac{\mathrm{V}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}}=\frac{1.59 \mathrm{~V}}{240 \Omega} \\ & =6.62 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{E}} & \cong \mathrm{I}_{\mathrm{CQ}}=6.62 \mathrm{~mA}\end{aligned}$
Find $V_{\text {CEQ }}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CEQ}} & =\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CQ}}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right) \\
& =15 \mathrm{~V}-6.62 \mathrm{~mA}(1.24 \mathrm{k} \Omega) \\
& =6.79 \mathrm{~V}
\end{aligned}
$$

Midpoint bias is at $1 / 2 \mathrm{~V}_{\mathrm{CC}}(7.5 \mathrm{~V})$ This circuit is close at 6.79 V

Example where $\mathbf{R}_{\text {base }}$ cannot be ignored

Find the values of I_{CQ} and $\mathrm{V}_{\mathrm{CEQ}}$ for the following circuit.
Is the circuit mid-point biased ? Find $\mathrm{R}_{\text {base }}$

Find $10 \mathrm{R}_{2}$

$$
\begin{aligned}
\mathrm{R}_{\text {base }} & =\mathrm{h}_{\mathrm{FE}} \mathrm{R}_{\mathrm{E}} \\
& =50(1.1 \mathrm{k} \Omega) \\
& =55 \mathrm{k} \Omega
\end{aligned}
$$

$10 \mathrm{R}_{2}=10(10 \mathrm{k} \Omega)$

$$
=100 \mathrm{k} \Omega
$$

Since $55 \mathrm{k} \Omega$ is much smaller than $100 \mathrm{k} \Omega$ we cannot ignore the effects of $\mathrm{R}_{\text {base }}$ Use the Thevenin Alternative

$\xlongequal{\text { Find } \mathrm{V}_{\mathrm{TH}}} \quad \mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

$$
=20 \mathrm{~V} \frac{10 \mathrm{k} \Omega}{78 \mathrm{k} \Omega}=2.56 \mathrm{~V}
$$

$\underline{\underline{\text { Find } R_{T H}}}$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{TH}} & =\mathrm{R}_{1} \| \mathrm{R}_{2} \\
& =68 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega=8.72 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
\stackrel{\text { Find } \mathrm{I}_{\mathrm{CO}}}{ } \mathrm{I}_{\mathrm{CQ}} & =\frac{\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{BE}}}{\frac{\mathrm{R}_{\mathrm{TH}}}{h_{\mathrm{FE}}}+\mathrm{R}_{\mathrm{E}}} \\
& =\frac{2.56 \mathrm{~V}-0.7 \mathrm{~V}}{\frac{8.72 \mathrm{k} \Omega}{50}+1.1 \mathrm{k} \Omega}
\end{aligned}
$$

$\xlongequal{\text { Find } V_{\text {CEO }}}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CEQ}} & =\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CQ}}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right) \\
& =20 \mathrm{~V}-1.46 \mathrm{~mA}(7.3 \mathrm{k} \Omega) \\
& =9.34 \mathrm{~V}
\end{aligned}
$$

$$
=\frac{1.86 \mathrm{~V}}{1.2744 \mathrm{k} \Omega}=1.46 \mathrm{~mA}
$$

Midpoint bias is at $1 / 2 \mathrm{~V}_{\mathrm{CC}}(10 \mathrm{~V})$ This circuit is close at 9.34 V

Saturation and Cutoff

The dc load line is plotted using the end points of $\mathrm{I}_{\text {C(sat) }}$ and $\mathrm{V}_{\text {CE(om) }}$

When the transistor is saturated, it acts like a closed switch. The voltage across it $\left(\mathrm{V}_{\mathrm{CE}}\right)$ is approx. zero and the current is determined by:

$$
\mathbf{I}_{\mathrm{C} \text { (fat) }}=\frac{\mathbf{V}_{\mathrm{CC}}}{\mathbf{R}_{\mathrm{C}}+\mathbf{R}_{\mathrm{E}}}
$$

When the transistor is in cutoff, it acts like an open switch The current is zero and the voltage across it $\left(\mathrm{V}_{\mathrm{CE}}\right)$ is the supply voltage $\mathrm{V}_{\mathrm{CC}} . \quad \mathrm{V}_{\mathrm{CE} \text { (off) }}=\mathrm{V}_{\mathrm{CC}}$

The load line itself represents all of the possible operating points for the transistor.

The Geometric Average

Often, a value for $h_{\text {FE }}$ is not given for a circuit. In this case we must use a spec. sheet to determine the value to use.

If a typical value is given, use that value.
If a maximum and minimum value are given, then find the geometric average of the two values and use it in your calculations.

See the example on the next page.

Example

Find the values of I_{CQ} and $\mathrm{V}_{\text {CEQ }}$ for the following circuit.
Is the circuit mid-point biased ?

We do not know the value of h_{FE} We can determine the range of $h_{F E}$ from the spec sheet if we know the value of I_{C}.
Assume the circuit is midpoint biased.
 Since this is an amplifier, it would normally be designed for midpoint bias. We will find $\mathrm{I}_{\mathrm{Clata},}$, then take half of this value to find the midpoint.
Find $I_{C(\text { sat })} I_{C(\text { sat })}=\frac{V_{C C}}{R_{C}+R_{E}}$

$$
\begin{aligned}
& =\frac{10 \mathrm{~V}}{500 \Omega} \\
& =20 \mathrm{~mA}
\end{aligned}
$$

Midpoint bias is at 10 mA
From the spec sheet find the range of $h_{F E}$ for $I_{C}=10 \mathrm{~mA}$

From the spec sheet we determine that $\mathrm{h}_{\mathrm{FE}(\text { max })}=300$ and $\mathrm{h}_{\mathrm{FE}(\text { min })}=100$

Find the geometric average

$$
\begin{aligned}
\mathrm{h}_{\mathrm{FE}(\text { ave })} & =\sqrt{\mathrm{h}_{\mathrm{FE}(\text { min })} \times \mathrm{h}_{\mathrm{FE}(\text { max })}} \\
& =\sqrt{100 \times 300} \\
& =173
\end{aligned}
$$

Use this value and solve the circuit in the normal way.

Find $\mathrm{R}_{\text {base }}$

Find $10 R_{2} \quad 10 R_{2}=10(680 \Omega)$

$$
=6.8 \mathrm{k} \Omega
$$

Since $41.52 \mathrm{k} \Omega$ is much larger than $6.8 \mathrm{k} \Omega$ we can ignore the effects of $\mathrm{R}_{\text {base }}$
Find $V_{B} \quad V_{B}=\frac{R_{2}}{R_{1}+R_{2}} V_{C C}$

$$
\begin{aligned}
& =\frac{680 \Omega}{2.18 \mathrm{k} \Omega} 10 \mathrm{~V} \\
& =3.12 \mathrm{~V}
\end{aligned}
$$

Find $V_{E} \quad V_{E}=V_{B}-0.7 \mathrm{~V}$
Find $I_{E} \quad I_{E}=\frac{V_{E}}{R_{E}}=\frac{2.42 \mathrm{~V}}{240 \Omega}$

$$
=10.08 \mathrm{~mA}
$$

$$
\mathrm{I}_{\mathrm{E}} \cong \mathrm{I}_{\mathrm{CQ}}=10.08 \mathrm{~mA}
$$

Find $\mathrm{V}_{\mathrm{CEQ}}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CEQ}} & =\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CQ}}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right) \\
& =10 \mathrm{~V}-10.08 \mathrm{~mA}(500 \Omega) \\
& =4.96 \mathrm{~V}
\end{aligned}
$$

Midpoint bias is at $1 / 2 \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})$
This circuit is very close at 4.96 V

$$
\begin{aligned}
& =3.12 \mathrm{~V}-0.7 \mathrm{~V} \\
& =2.42 \mathrm{~V}
\end{aligned}
$$

Thevenin's Theorem is one of the most important of the basic theorems we have for circuit analysis. It allows us to simplify complicated circuits that contain many resistances and one or more energy sources down to one voltage source and one single resistance.

Brief Definition

Any linear bilateral network may be simplified to a simple two terminal circuit consisting of a single voltage source in series with a single resistor as shown to the right.
$V_{T H}$ is the open circuit voltage appearing at the output terminals a and b.
$\boldsymbol{R}_{T H}$ is the Thevenin equivalent resistance that represents the total resistance "seen" between the output terminals

Thevenin Equivalent
Circuit a and b.

How to use it

1) Remove the load from the circuit.
2) Label the resulting two terminals a and b (any notation will do)
3) Set all the sources in the circuit to zero.

Voltage sources are replaced with short circuits
Current sources are replaced with open circuits
4) Calculate the Thevenin equivalent resistance $\boldsymbol{R}_{\text {тн }}$. as seen from the output terminals a and b.
5) Replace the sources back to their original positions. Calculate the open circuit voltage at the output terminals.
6) Draw the new equivalent Thevenin circuit above using your calculated values of \mathbf{V}_{TH} and $\mathbf{R}_{\mathrm{TH}}{ }^{*}$
7) Replace the load on the new circuit.

How The Thevenin's Alternative Works

This is the example on page 1-13 where we said that $\mathrm{R}_{\text {base }}$ cannot be ignored. The problem here was that enough base current flows in this circuit to cause a significant drop in the calculated base voltage (see The Effects of Transistor Loading p 1-9) We need an alternative method for calculating the base voltage and I_{CQ} that will compensate for this voltage drop.

Using the Thevenin's alternative method will provide this. Here is how it works:

Fig. A1 is the same circuit we used in the example. The capacitors have no effect here and have been removed. The power supply has been added to help explain the steps.

Fig. A1 - Circuit redrawn for simplicity

Fig. A2 - the transistor is removed
2) label the resulting two terminals $\boldsymbol{a} \& \boldsymbol{b}$ Since R_{C} and R_{E} are no longer connected, they can be removed. The two points remaining are labeled $\boldsymbol{a} \boldsymbol{\&} \boldsymbol{b}$
See Fig. A3

3) Set all the sources in the circuit to zero. Voltage sources are replaced with short circuits See Fig. A4

Fig. A4 - V_{CC} is now shorted to ground
4) Calculate the Thevenin equivalent resistance $R_{T H}$ as seen from the output terminals a and b.
The circuit shown in A5 is redrawn to show that R_{1} is in parallel with R_{2}. The resultant is R_{TH}

$$
\begin{aligned}
\mathrm{R}_{\mathrm{TH}} & =\mathrm{R}_{1} \| \mathrm{R}_{2} \\
& =68 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega=8.72 \mathrm{k} \Omega
\end{aligned}
$$

Fig. A5 - R_{1} and R_{2} are in parallel
5) Replace the sources back to their original positions.

Calculate the open circuit voltage at the output terminals. Fig. A6 shows the V_{CC} supply back in place. We now calculate the value of $\mathrm{V}_{\text {тн }}$ as we have in the past. Remember that $\mathrm{V}_{\text {т }}$ is the voltage from point (a) to point (b) provided that no current is flowing from point (a).
$V_{T H}$ is often called the "open circuit voltage"

$$
\begin{aligned}
\mathrm{V}_{\mathrm{TH}} & =\mathrm{V}_{\mathrm{CC}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& =20 \mathrm{~V} \frac{10 \mathrm{k} \Omega}{78 \mathrm{k} \Omega}=2.56 \mathrm{~V}
\end{aligned}
$$

Fig. A6- V_{CC} has been replaced and $\mathrm{V}_{\text {TH }}$ has been calculated
6) Draw the new equivalent Thevenin circuit using your calculated values of $V_{T H}$ and $R_{T H}$

Figure A 7 is the exact equivalent to A 3 as shown below

Thevenin Equivalent

Fig. A7 is the Thevenin equivalent of Figure A3
$V_{C C}$
7) Replace the load on the new circuit.

Figure A8 now has the transistor, R_{C} and R_{E} replaced in the circuit.

Fig. A8 - The complete Thevenin circuit
We have now completed the new Thevenin equivalent circuit. Now we will analyze this simple circuit to see how it works.

Analysis of the Thevenin Circuit

We begin by simply analyzing the part of the circuit within the oval.
The base voltage "sees" the baseemitter junction as a diode with approximately 0.7 V across it as shown in Fig. A9.
The voltages around the circuit are shown in the squares.

Fig. A9 - Base Circuit showing the Base-Ēmitter diode and the voltages around the circuit

Figure A9 is a series circuit. Kirchoff's Voltage Law says that the sum of the voltage drops in this circuit must equal the voltage rises.
This means that:

$$
\mathbf{V}_{\mathrm{TH}}=\mathbf{V}_{\mathrm{RTH}}+\mathbf{V}_{\mathrm{BE}}+\mathbf{V}_{\mathrm{RE}}
$$

Kirchoff's Law says : $\quad \mathbf{V}_{\text {TH }}=\mathbf{V}_{\text {RTH }}+\mathbf{V}_{\mathrm{BE}}+\mathbf{V}_{\mathrm{RE}}$
Using Ohm's Law
substitute in the equation $V_{T H}=\mathbf{I}_{\mathbf{B}} \mathbf{R}_{\mathrm{TH}}+\mathbf{V}_{\mathrm{BE}}+\mathbf{I}_{\mathrm{E}} \mathbf{R}_{\mathrm{E}}$
We need to find I_{B}. From last term we know that:

$$
\boldsymbol{h}_{\mathrm{FE}}=\frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{I}_{\mathrm{B}}} \text { Changing this around: } \mathbf{I}_{\mathrm{B}}=\frac{\mathbf{I}_{\mathrm{C}}}{\boldsymbol{h}_{\mathrm{FE}}}
$$

Substitute $\mathbf{I}_{\mathbf{B}}=\frac{\mathbf{I}_{\mathrm{C}}}{\boldsymbol{h}_{\mathrm{FE}}}$ into the equation and we have

$$
\mathbf{V}_{\mathrm{TH}}=\frac{\mathbf{I}_{\mathrm{C}}}{\boldsymbol{h}_{\mathrm{FE}}} \mathbf{R}_{\mathrm{TH}}+\mathbf{V}_{\mathrm{BE}}+\mathbf{I}_{\mathrm{E}} \mathbf{R}_{\mathrm{E}}
$$

Re-arrange to find I_{C}

$$
\begin{aligned}
\mathbf{V}_{\mathrm{TH}} & =\frac{\mathbf{I}_{\mathrm{C}}}{\boldsymbol{h}_{\mathrm{FE}}} \mathbf{R}_{\mathrm{TH}}+\mathbf{V}_{\mathrm{BE}}+\mathbf{I}_{\mathrm{E}} \mathbf{R}_{\mathrm{E}} \\
\mathbf{V}_{\mathrm{TH}}-\mathbf{V}_{\mathrm{BE}} & =\mathbf{I}_{\mathrm{C}}\left(\frac{\mathbf{R}_{\mathrm{TH}}}{\boldsymbol{h}_{\mathrm{FE}}}+\mathbf{R}_{\mathrm{E}}\right) \quad \text { since } \mathbf{I}_{\mathrm{C}}=\mathbf{I}_{\mathrm{E}}
\end{aligned}
$$

$$
\mathbf{I}_{\mathrm{C}}=\mathbf{I}_{\mathrm{CQ}}=\frac{\mathbf{V}_{\mathrm{TH}}-\mathbf{V}_{\mathrm{BE}}}{\frac{\mathbf{R}_{\mathrm{TH}}}{\boldsymbol{h}_{\mathrm{FE}}}+\mathbf{R}_{\mathrm{E}}} \text { linis formula finds the value of } \mathrm{I}_{\mathrm{CQ}} . \begin{aligned}
& \text { and takes into account, the loading } \\
& \text { anfect of the transistor }
\end{aligned}
$$

The Thevenin Alternative Works

The original problem with this circuit is the fact that the transistor "loads down" the biasing resistors, and the value of V_{B} will be considerably less than what we calculated. This is a direct result of the base current. Since this transistor has an h_{FE} of 50 , the base ${ }^{10}$ current is high enough to inject an unacceptable error in our calculations.

Fig A12 - The Original Circuit

Our answer to this problem was to analyze the circuit using the Thevenin alternative method. This method takes into account the loading of the transistor on the biasing resistors. Here, we will show that this method works.

Fig. A12 is the original circuit and Fig. A13 is the Thevenin equivalent. Our original calculations using the Thevenin alternative are below.
$\xlongequal{\text { Find } \mathrm{V}_{\mathrm{TH}}} \quad \mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=20 \mathrm{~V} \frac{10 \mathrm{k} \Omega}{78 \mathrm{k} \Omega}=2.56 \mathrm{~V}$
$\underline{\underline{\text { Find } \mathbf{R}_{T H}}} \mathrm{R}_{\mathrm{TH}}=\mathrm{R}_{1}| | \mathrm{R}_{2}=68 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega=8.72 \mathrm{k} \Omega$
$\xlongequal{\text { Find } \mathrm{I}_{\mathrm{CQ}}} \quad \mathrm{I}_{\mathrm{CQ}}=\frac{\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{BE}}}{\frac{\mathrm{R}_{\mathrm{TH}}}{h_{\mathrm{FE}}}+\mathrm{R}_{\mathrm{E}}}$

$$
=\frac{2.56 \mathrm{~V}-0.7 \mathrm{~V}}{\frac{8.72 \mathrm{k} \Omega}{50}+1.1 \mathrm{k} \Omega}
$$

$$
=\frac{1.86 \mathrm{~V}}{1.2744 \mathrm{k} \Omega}=1.46 \mathrm{~mA}
$$

Fig. A13 - The complete Thevenin circuit

The Thevenin Alternative Works

$\mathrm{I}_{\mathrm{CQ}}=\mathbf{1 . 4 6 \mathbf { m A }}$. We said that this method accounts for the loading effect. Now we can find "loaded down" value of V_{B}. First, find the actual I_{B}.

$$
\begin{gathered}
\mathbf{I}_{\mathrm{CQ}}=\mathbf{1 . 4 6} \mathbf{~ m A} \\
\boldsymbol{h}_{\mathrm{FE}}=\frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{I}_{\mathrm{B}}} \text { and } \mathbf{I}_{\mathrm{B}}=\frac{\mathbf{I}_{\mathrm{C}}}{\boldsymbol{h}_{\mathrm{FE}}} \\
\mathbf{I}_{\mathrm{B}}=\frac{\mathbf{I}_{\mathrm{CQ}}}{\boldsymbol{h}_{\mathrm{FE}}}=\frac{1.46 \mathrm{~mA}}{50}=29.2 \mu \mathrm{~A}
\end{gathered}
$$

Fig. A14-The complete Thevenin circuit

As shown in Fig A14 the base current I_{B} is the current through $R_{T H}$ Find the voltage drop across R_{TH}

$$
\begin{aligned}
\mathbf{V}_{\mathbf{R T H}} & =\mathbf{I}_{\mathbf{B}} \mathbf{R}_{\mathrm{TH}} \\
& =(29.2 \mu \mathrm{~A})(8.72 \mathrm{k} \Omega) \\
& =254.6 \mathrm{mV}
\end{aligned}
$$

The real "loaded" value of V_{B} is:

$$
\begin{aligned}
\mathbf{V}_{\mathrm{B} \text { (Loaded) }} & =\mathbf{V}_{\mathrm{TH}}-\mathbf{V}_{\mathbf{R T H}} \\
& =2.56 \mathrm{~V}-254.6 \mathrm{mV} \\
& =2.31 \mathrm{~V}
\end{aligned}
$$

$\mathbf{V}_{\mathrm{B} \text { (Loaded) }}$ is 2.31 V . This is the value of the base voltage that would exist if we were to build the circuit, and actually measured it. Now that we have the actual value of V_{B}, we should now be able to use the original formulas to find I_{CQ}.

The Thevenin Alternative Works

$$
\underline{\text { Find } \mathbf{V}_{\mathrm{B}}} \quad \mathbf{V}_{\mathrm{B} \text { (Loaded) }}=2.31 \mathrm{~V}
$$

$\underline{\underline{\text { Find }} V_{E}} \quad V_{E}=V_{B}-0.7 \mathrm{~V}$

$$
\begin{aligned}
& =2.31 \mathrm{~V}-0.7 \mathrm{~V} \\
& =1.61 \mathrm{~V}
\end{aligned}
$$

$\xlongequal{\text { Find } I_{E}} \quad I_{E}=\frac{V_{E}}{R_{E}} \quad=\frac{1.61 \mathrm{~V}}{1.1 \mathrm{k} \Omega}$
$=1.46 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{E}} \cong \mathrm{I}_{\mathrm{CQ}}=1.46 \mathrm{~mA}$
$\mathbf{I}_{\mathrm{CQ}}=\mathbf{1 . 4 6} \mathbf{~ m A}$. This is the same value for I_{CQ} that we calculated using the Thevenin alternative method for this question on page 1-13 of these notes.

