Pu<u>rpose</u>

- * To measure time and frequency using an analog oscilloscope.
- * To generate various waveforms using a function generator and measure the amplitude and frequency of each.

Equipment

1 - Function Generator	8 Resistors	2 - 100Ω	2 – Capacitors	$2 - 470 \mu\text{F}$
1 - Power Supply		1 - $820~\Omega$		$2 - 10 \mu\text{F}$
1 - Digital VMulti Meter		$1 - 1 k \Omega$		
2 Diodes 1N4148		$1 - 2 k \Omega$		
2 - Potentiometers 1 k Ω		$1 - 3.9 \text{ k} \Omega$		
4 - Transistors: 3- 2N3904, 1- 2	2N3906	$2 - 10 \text{ k} \Omega$		

Discussion

In this lab, we will build a complete audio amplifier. The first transistor is a Class A input stage with a variable gain. The 1 $k\Omega$ potentiometer in the emitter circuit of Q_1 is used to vary the swamping level of the stage. Depending on where we set the potentiometer, we can greatly vary the gain of this stage.

The second transistor, Q_2 , is the driver transistor for the final stage. The driver transistor serves two purposes. Firstly, it is a current source that sets up the dc biasing circuit through the compensating diodes. By adjusting R_7 , we control the midpoint biasing of Q_3 and Q_4 . Secondly, Q_2 is a large signal amplifier that is heavily swamped. Note that there is no bypass capacitor across R_9 . This reduces its gain to about 8.7. The heavy swamping helps reduce distortion caused by the non-linearity of r'_a

The final stage is a typical class AB push pull emitter follower. Q₃ and Q₄ are a matched complementary pair.

Lab 9 The Complete Audio Amplifier

Prelab

- 1) Using the *Class B Driver Section in the notepak* as a guide, prove all the dc calculations for Table 1.
- 2) Assuming that R_4 is set for maximum gain, prove the ac results in Table 2.
- 3) Build the circuit before you come to the lab

Table 1 dc Values	V_{BQ1}	V_{cq_1}	$V_{_{\rm EQ1}}$	$ m V_{BQ2}$	V_{cq_2}	$V_{_{\rm EQ2}}$	$V_{_{\mathrm{BQ3}}}$	V_{cq_3}	V_{EQ3}	$V_{_{\mathrm{BQ4}}}$	V_{cq_4}	V_{EQ4}
Calculated	1.67 V	6.22 V	970 mV	1.13 V	4.3 V	430 mV	5.7 V	10 V	5 V	4.3 V	0 V	5 V
Measured												

Do your de Calculations here

Table 2 ac Values				
Calculated	1			
Measured	1			

$V_{_{\mathrm{BQ1}}}$	V_{cq_1}			
19 mV _{p-p}	727 mV _{p-p}			

$ m V_{BQ2}$	$ m V_{cq2}$
727 mV _{p-p}	6.35 V _{p-p}

V_{BQ3}	V_{cq_3}	V_{EQ3}
6.35 V _{p-p}	0 V _{p-p}	6. V _{p-p}

$ m V_{_{BQ4}}$	V_{cq4}	$V_{_{\rm EQ4}}$
6.35 V _{p-p}	$0\ V_{_{p ext{-}p}}$	6. V _{p-p}

Do your ac calculations here and on the top of the next page

Lab 9 The Complete Audio Amplifier

Do this Part in the Lab

- 1) Hook up your circuit and set Q_3 and Q_4 for midpoint bias by adjusting R_7 .
- 2) With the function generator off, measure and record all the values shown in Table 1.
- 3) Connect the generator and set the input frequency to 1 kHz. Place the scope across $R_{\scriptscriptstyle L}$ and adjust the generator amplitude to provide a 6 $V_{\scriptscriptstyle p-p}$ output.
- 4) Measure and record all the ac values shown in Table 2. Note: You probably will not be able to measure V_{BOP}
- 5) Replace the 100Ω resistor with a speaker. Adjust the output of the function generator to produce an audible tone. Vary the frequency and notice the tone changes.
- 6) Replace the function generator with a microphone. Hookup the scope across the speaker. While speaking into the microphone, adjust the scope to show you a trace of your speech. Note the change in amplitude as you speak closer, then farther from the microphone.