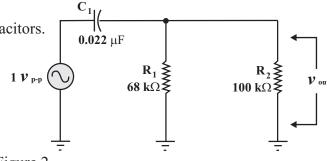


Lab 2 Coupling & Bypass Capacitors


Name

Purpose:

To demonstrate the effect of coupling and bypass capacitors.

Equipment:

- 1 ac Function Generator
- 1 Dual Trace Oscilloscope
- 1 $0.022 \mu F$ Capacitor
- 4 Resistors 2 22 kΩ, 1 68 kΩ, 1 100 kΩ

Section

Figure 1

Calculated Frequency

 $\mathcal{U}_{ ext{out}}$

<u>Prelab:</u>

Calculate f_c , $0.1f_c$ & $10f_c$ for Figure 1 and Figure 2.

Insert the calculated values in Tables 1 & 2

Procedure:

Coupling Capacitors

- 1) Construct the circuit shown in Figure 1.
- 2) Connect the function generator to the circuit. Set the function to sine wave.
 - Set the frequency to the calculated value of f_c .

Table 1 Coupling Capacitor

 $f_{\scriptscriptstyle
m C}$

 $0.1 f_{\rm C}$

 $10 f_{\rm c}$

- 3) Measure and record the output voltage. Set the output voltage of the generator to 1 V_{p-p} Record the values in Table 1 R_3
- 4) Repeat steps 2 and 3 with the generator set to $0.1f_c$ & $10f_c$

Bypass Capacitors

- 1) Construct the circuit shown in Figure 2(a) without the capacitor.
- 2) Connect the function generator to the circuit.
 - Set the function to sine wave.
 - Set the frequency to the calculated value of $f_{
 m c}$.
 - Adjust the output voltage of the generator for 1 V_{p-p} _across R_4
- 3) Connect the capacitor across R₄.as shown in Figure 2(b)
- 4) Measure and record the voltage across the capacitor.
- 5) Repeat steps 2, 3 and 4 with the function generator set to 0.1 f_c and 10 f_c .

Questions & Problems

- 1) A coupling capacitor ideally looks like a dc _____circuit and an ac _____circuit.
- 2) If an amplifier is being designed for the audio frequency (20 Hz to 20 kHz), which is the worst case frequency that the designer has to worry about when selecting the size of the coupling capacitor.

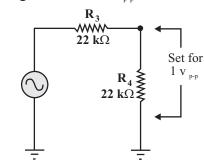


Figure 2(a)

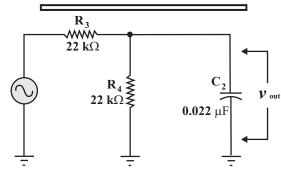


Figure 2(b)

Table 2 Bypass Capacitor	Calculated Frequency	$\mathcal{U}_{ ext{out}}$
$f_{\scriptscriptstyle ext{C}}$		
$0.1 f_{\rm C}$		
10 f _C		