

For this Lab -- Please work is pairs. You require 3 MPF102 JFETs. Your kit supplies only 2.

Purpose:

- * To examine four different bias methods for the JFET
- * To examine the stability of each of these bias methods

<u>Equipment</u>

- * 1 Agelent dc Power Supply and 1 bipolar power supply
- * 1 Digital Multimeter (DMM)
- * 1 2N3904 npn Transistor
- * 3 MPF102 JFETs

* 9 Resistors	1 -470 Ω	2 - 6.8 k Ω
	1 - 680 Ω	2 - 33 k Ω
	1 - 1 k Ω	1 - 100 k Ω
	1 - 2.2 k Ω	

Discussion

We know that controlling the Q point of our JFET is more difficult than it was with our junction transistor. This is because I_{DSS} varies widely from one JFET to the next. In order to stabilize I_D to a constant level from one JFET to another, we need a circuit that will vary V_{GS} widely.

- <u>Gate bias</u> is the simplest but worst way to control the drain current. With gate bias, we supply a constant value of V_{GS} , and the resulting drain current will vary widely from device to device.
- <u>Self bias</u> offers some improvement because the source resistor produces local feedback. Here, the value of V_{GS} varies somewhat with the value of drain current. This helps to control the drain current.

Voltage Divider bias results in a relatively stable Q point, however it requires a large supply voltage.

<u>Current Source bias</u> can produce the most stable Q-point because the bipolar transistor forces the drain current to a pre-determined value.

In this lab, we will calculate and draw the bias line of each of the four circuits. We will then predict the upper and lower limits of I_D from the bias line.

We will build each of the four biasing circuits and measure the performance of three JFETS in each circuit. We will compare the range of I_D as we progress through all 4 circuits. We will begin with Gate bias, then move on to Self bias. Voltage divider bias, and finally Current Source bias. Each of these circuits is described in detail in the notes. We should find that as we progress through each circuit, the measured range of I_D diminishes. In our Current Source Bias circuit, we should not only find that the I_D is very stable from JFET to JFET, but also that the value of I_D is very close to the value we predicted in our calculations.

<u>Prelab</u>

Each biasing circuit has prelab section. Be sure to perform the calculations, draw the bias line and predict the range of I_D for each circuit. *The prelab is on pages 4 and 5 of this lab.*

Figure 2

Use the Agilent or HP power supply to supply $V_{\rm cs}$. Use the digital meter that is part of the supply to measure the value of $V_{\rm cs}$

- 2) Increase the negative gate supply voltage until the drain current drops to approximately 1 μ A. Record the value of V_{GS(off)} in Table 1 above.
- 3) Repeat Step 1 & 2 for each of the other JFETs.

Gate Bias

into the circuit.

- With gate bias, you apply a fixed gate voltage that reverse biases the gate of the JFET. This produces a drain current that is less than I_{DSS}. The problem is that you cannot accurately predict the drain current in mass production because of the variation in the required V_{GS}. The following will illustrate this point.

 Agilent or HI
 Supply

2)	Build the circuit shown in Figure 3. Apply a V_{GS} of -1.5V.	-
	Measure V_{GS} , I_D , and V_{DS} . and record the data in Table 2 for each JF.	ET.

<u>Table 2</u> Gate Bias	V _{GS}	$I_{\scriptscriptstyle D}$	V _{DS}
JFET MPF102 (1)	-1.5 V		
JFET MPF102 (2)	-1.5 V		
JFET MPF102 (3)	-1.5 V		

Self Bias

1) Build the circuit shown in Figure 4. Measure and record the 3 values shown in Table 3. Repeat the measurements for the other JFETs.

The drain current <u>variation</u> for the self- bias circuit should be less than the variation than the gate-biased circuit.

<u>Table 3</u> Self Bias	V _{GS}	$I_{\scriptscriptstyle D}$	$V_{\rm DS}$
JFET MPF102 (1)			
JFET MPF102 (2)			
JFET MPF102 (3)			

Voltage Divider Bias

1) Build the circuit shown in Figure 5. Measure and record the 3 values shown in Table 4. Repeat the measurements for the other JFET.

The drain current variation for the voltage divider bias circuit should continue to become more stable. It should show less variation than either \mathbf{b} s g of the circuits above.

Table 4 Voltage Divider Bias	V _{GS}	$I_{\scriptscriptstyle D}$	V _{DS}
JFET MPF102 (1)			
JFET MPF102 (2)			
JFET MPF102 (3)			

Figure 5

Current Source Bias

- 1) Build the circuit shown in Figure 6. Measure and record the 3 values shown in Table 5. Repeat the measurements for the other JFET.
 - The drain current for the current source bias circuit should have less variation than any of the other circuits.

<u>Table 5</u> Current Source Bias	V _{GS}	$I_{\scriptscriptstyle D}$	V _{DS}
JFET MPF102 (1)			
JFET MPF102 (2)			
JFET MPF102 (3)			

Show all calculations

Questions

1) Look back at Tables 2 thru 5.

For each bias type, note the minimum and maximum drain current that you measured.

Insert the lowest and the highest measured value of I_D in the <u>measured</u> portion of Table 6.

Table 6	Predicted (prelab) Range of I _p		Measured Range of I _D		
Bias Type Comparison	Low I_D	High $I_{\scriptscriptstyle D}$	Low I_D	High $I_{\scriptscriptstyle D}$	
Gate Bias					
Self Bias					
Voltage Divider Bias					
Current Source Bias					

2) Look at the measured range of I_D and compare the results for each bias type. What can you conclude about each circuit's ability to control I_D

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Order this document by MPF102/D

JFET VHF Amplifier

N- Channel – Depletion

MPF102

CASE 29-04, STYLE 5 TO-92 (TO-226AA)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit		
Drain - Source Voltage	V _{DS}	25	Vdc		
Drain - Gate Voltage	VDG	25	Vdc		
Gate - Source Voltage	VGS	-25	Vdc		
Gate Current	IG	10	mAdc		
Total Device Dissipation @ T _A =25 [°] C Derate above 25 [°] C	PD	350 2.8	mW mW/℃		
Junction Temperature Range	ТJ	125	°C		
Storage Temperature Range	T _{stg}	- 65 to +150	°C		
ELECTRICAL CHARACTERISTICS (T _A =255C unless otherwise noted)					

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate - Source Breakdown Voltage $(I_G = -10 \ nAdc, V_{DS} = 0)$	V _(BR) GSS	-25	-	Vdc
Gate Reverse Current (V_{GS} =-15 Vdc, V_{DS} =0) (V_{GS} =-15 Vdc, V_{DS} =0, T_A =100 $^{\circ}$ C)	IGSS		-2.0 -2.0	nAdc mAdc
Gate ±Source Cutoff Voltage (V _{DS} =15 Vdc, I _D =2.0 nAdc)	V _{GS(off)}	-	-8.0	Vdc
Gate \pm Source Voltage (V _{DS} =15 Vdc, I _D =0.2 mAdc)	V _{GS}	-0.5	-7.5	Vdc
ON CHARACTERISTICS				
Zero- Gate ±Voltage Drain Current(1) (V _{DS} =15 Vdc, V _{GS} =0 Vdc)	IDSS	2.0	20	mAdc
SMALL±SIGNAL CHARACTERISTICS				
Forward Transfer Admittance(1) (V _{DS} =15 Vdc, V _{GS} =0, f =1.0 kHz) (V _{DS} =15 Vdc, V _{GS} =0, f =100 MHz)	y _{fs}	2000 1600	7500 -	μmhos
Input Admittance (V _{DS} =15 Vdc, V _{GS} =0, f =100 MHz)	Re(y _{is})	-	800	μ mhos
Output Conductance (V _{DS} =15 Vdc, V _{GS} =0, f =100 MHz)	Re(y _{OS})	-	200	μ mhos
Input Capacitance (V _{DS} =15 Vdc, V _{GS} =0, f =1.0 MHz)	Ciss	-	7.0	pF
Reverse Transfer Capacitance ($V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{rss}	-	3.0	pF

1. Pulse Test; Pulse Width \leq 630 ms, Duty Cycle \leq 10%.

