

Digital TV Rigs and Recipes Part 5 ITU-T J.83/B

Dipl. Ing. (Univ.) S. Grunwald

Contents

5.	Introduction 3
5.1	Modulation to ITU-T J.83/B (North American Cable Standard)
5.1.1	Baseband Input Module 3
5.1.2	MPEG2 Transport Framing 3
513	Reed-Solomon (RS) Forward Error Correction (FEC) 5
5121	EEC Frame Format For 6/0/M
5.1.5.1	FEC Frame Formation 04QAM
5.1.3.2	FEC Frame Format for 256QAM
5.1.4	Interleaver 7
5.1.5	Randomizer 8
5.1.6	Mapping of Randomized Data to 64QAM and 256QAM Symbols
5.1.6.1	Mapping of Randomized Data to 64QAM Symbols
5.1.6.2	Mapping of Randomized Data to 256QAM Symbols
5.2	64QAM and 256QAM Signal Bandwidths
521	64QAM Signal Bandwidth
522	2560 AM Signal Bandwidth
0.2.2	
5.2.3	$\sqrt{\cos}$ Filtering at Transmitter and Receiver End14
5.2.4	ITU-T J.83/B Key Data
5.3	Data Rates and Symbol Rates in ITU-T J.83/B
5.4	Important Requirements To Be Met By ITU-T J.83/B Test Transmitters
5.5	Power Measurement 19
551	Mean Power Measurement with Power Meter R&S NRVS
0.011	and Thermal Power Sensor 10
552	Mean Power Measurement with Spectrum Applyzer P&S FSEv
0.0.2	P&S ESD or P&S ESI 1
552	Maan Dower Measurement with TV Test Reseiver B8S EEA Model 70 or 72
0.0.0 E C	Dit Error Datio (DED)
5.0	
5.7	BER Measurement with R&S SFQ and R&S SFQ-B17
	or R&S SFL-J and R&S SFL-K17
5.8	QAM Parameters 28
5.8.1	Decision Fields 25
5.8.2	QAM Constellation Diagram
5.8.3	I/Q Imbalance 20
5.8.4	I/Q Quadrature Error
5.8.5	Carrier Suppression 27
5.8.6	Phase Jitter 27
5.8.7	Phase and Amplitude Jitter Spectra
588	Signal-To-Noise Batio (SNR) 28
59	Modulation Error Ratio (MER) Error Vector Magnitude (EVM)
5 10	Bit Error Patio (REP) Magurament
5.10	Equivalent Noise Degradation (END) Measurement
5.11	Equivalent Noise Degradation (END) Measurement
0.1Z	Acceleration of the second sec
5.12.1	Amplitude and Phase Spectrum
5.12.2	Spectrum and Shoulder Distance
5.13	Echoes in Cable Channel
5.14	Crest Factor of ITU-T J.83/B Signal 32
5.15	History 33
5.16	Alarm Report 33
5.17	Options for TV Test Receiver (QAM Demodulator) R&S EFA Model 70/73 35
5.17.1	RF Preselection Option R&S EFA-B3 (for R&S EFA Model 73)
5.17.2	Measurements with MPEG2 Decoder Option R&S EFA-B43
5.17.3	SAW Filters
	2 MHz R&S EFA-B14, 6 MHz R&S EFA-B11.
	7 MHz R&S FFA-B12 8 MHz R&S FFA-B13
5 18	Overview of ITU-T J 83/B Measurements
5.10	

5. Introduction

For optimal transmission, data not only has to be coded to MPEG2 (Motion Picture Experts Group), which reduces the data rate of the ITU-R BT.601 interface from 270 Mbit/s to typically 3 to 5 Mbit/s, but also subjected to a special type of modulation (see "Digital TV Rigs and Recipes" – Part 1 "ITU-R BT.601/656 and MPEG2"). Same as for the DVB standards, a comparison of analog modulation with digital modulation as used by the North American ITU-T J.83/B cable standard reveals that digital modulation yields a flat spectrum with a constant average power density across the 6 MHz channel bandwidth. The modulator (and, consequently, the demodulator) employed by the ITU-T J.83/B standard is of

Fig. 5.1 Comparison of M/NTSC spectrum and ITU-T J.83/B spectrum

more complex design than the DVB-C modulator commonly used in Europe and many other countries. Using concatenated coding for the MPEG2 data, ITU-T J.83/B offers forward error correction better than that of DVB-C.

Fig. 5.2 Block diagram of ITU-T J.83/B modulator/converter

5.1.1 Baseband Input Module

The MPEG2 transport stream (TS) packets are routed to the first function block of the digital TV modulator, which is the baseband input module, via one of the following interfaces:

> SPI (synchronous parallel interface) ASI (asynchronous serial interface) SSI (synchronous serial interface) SDTI (serial digital transport interface) HDB3 (high density bipolar of order 3) ATM (asynchronous transfer mode)

The TS packets are transported to the baseband input module at the specified ITU-T J.83/B data rates of 26.97035 Mbit/s net for 64QAM and 38.81070 Mbit/s net for 256QAM. The standard does not provide for other QAM modes. The baseband input module reconstructs the original TS data, optimizes return loss, and corrects amplitude and phase response versus frequency. It supplies all the required information to the clock and sync generator function block, which acts as a central clock generator for all other function blocks of the ITU-T J.83/B modulator. This information includes, for example, the data rate, which is derived from the incoming TS data, and in the case of the SPI interface, also sync byte signalling for the TS packet and data valid signalling via the data valid line. The reconstructed TS packets are taken from the baseband input module to the next function block, i.e. MPEG2 transport framing.

5.1.2 MPEG2 Transport Framing

After the input module, the TS packets undergo the first processing step:

To ensure reliable synchronization at the receiver end and to provide additional error correction capability, the MPEG2 transport packet structure is modified by substituting a parity checksum for the 0x47 sync byte which, in line with MPEG2, is the first byte of each TS packet. The parity checksum byte is obtained by means of sliding computation, then the sync byte is deleted, and the parity checksum byte appended at the end of the remaining 187 bytes of the TS packet. In this way, a 188-byte packet is obtained again.

Fig. 5.3 Checksum generator for MPEG2 sync byte encoding

MPEG2 data is applied as serial data to the input of the checksum generator. This means that TS packets with a length of 188 * 8 = 1504 bits are present. Checksum computation covers only 187 bytes however, so that the actual data volume is 1504 - 8 = 1496 bits.

The checksum generator is described by the following equation:

$$\begin{split} f(x) &= \frac{1 + x^{1497} * b(x)}{g(x)} & \text{where} \\ g(x) &= 1 + x + x^5 + x^6 + x^8 \text{ and} \\ b(x) &= 1 + x + x^3 + x^7 \end{split}$$

Prior to the start of the encoding operation, all clock buffers are set to zero. Then the 1496 bits are shifted into a feedback shift register. After the 1496 clock bits, the shift register is also set to zero by means of equation g(x). Using the last eight clock bits with the offset 0x67, the checksum, i.e. the coded sync byte, is generated. This sync byte, in turn, produces the original 0x47 sync byte at the decoder end. The syndrome generator employed for this purpose is illustrated below:

Fig. 5.4 Syndrome generator for MPEG2 sync byte decoding

If a valid code word is present at the syndrome generator input, the original 0x47 sync byte is restored at the generator output, i.e. the code word is replaced by the valid sync byte. In this way, a standard TS packet of 188 bytes length with the sync byte as the start byte is reproduced. It should be noted, however, that the sync byte is derived from the preceding TS packet and not from the 187 bytes following the sync byte.

Instead of the syndrome generator, a matrix operation can be employed at the decoder end to check whether a valid code word is present.

In this case, a vector R of 187 bytes of MPEG2 data and the checksum byte are applied to the decoder. Vector R has a size of 1 x 1504 (each TS packet contains 8 x 188 = 1504 bits). The vector is modulo 2 multiplied with a parity check matrix P of the size 1504 x 8. If data has been transmitted error-free, this operation yields a vector S of the size 1 x 8 and with the contents $S = [0100 \ 0111] = 0 \times 47$, which is the original sync byte of the TS packet.

For the parity check matrix P, a vector C of a size of 1×1497 has to be defined first. Vector C is structured as follows:

					— 1
		₩	₩	₩	₩ 1
	B03 F	D741	9FB9	B445	1E70
	857 F	9546	9EC8	23E0	AFF2
	97A 5	B182	40E4	2E3B	F4A1
	0DDB	5B53	989D	C59B	BB7D
	EBA0	4FDC	5A22	0F38	7419
	CAA3	CF64	91F0	57F9	546B
	58C1	2072	171D	7A50	1825
	2DA9	4C4E	E2CD	DDBE	B534
	A7EE	AD11	879C	BA0C	FDCC
0 44074	67B2	48F8	2BFC	AA35	F642
C = 1497 X 1 =	1039	0B8E	BD28	8C12	0724
	2627	F166	6EDF	DA9A	C4EA
	5688	C3CE	5D06	7EE6	D114
	A47C	15FE	551A	7B21	8F
	05C7	5E94	C609	0392	1
	78B3	376F	6D4D	6275	(binarv)
	61E7	AE83	3F73	688A	(
	0AFF	2A8D	3D90	47C0	
	2F4A	6304	81C9	5C77	
	1BB7	B6A6	313A	8B36	
		1			
•					
	Values in	n hex format	, unless otl	herwise not	ed

Fig. 5.5 Vector C

The hex values are entered serially bit by bit into the vector column, yielding a column length of 1497 bits.

Vector C is duplicated to produce the matrix P according to the following scheme:

Fig. 5.6 Parity check matrix P

Vector C is extended by seven zero bits and duplicated into seven more columns, each column shifted down by one bit position relative to the previous column. In this way, the eightcolumn matrix P is obtained.

The matrix is modulo 2 multiplied with the received vector R to yield the original 0x47 sync byte.

5.1.3 Reed-Solomon (RS) Forward Error Correction (FEC)

The output of the checksum generator is applied to the input of the Reed-Solomon encoder block. In a first step for RS encoding, the TS packet data is divided into sections of 7 bits referred to as symbols. Of these 7-bit symbols, RS blocks are formed, each block consisting of 122 symbols plus six 6 appended RS FEC symbols. The resulting t = 3, (128, 122) RS FEC code is capable of correcting up to three errored symbols per block. This means that a quasi-error-free (QEF) data stream with approximately one uncorrected error event every 15 minutes will be obtained, assuming a BER of 7×10^{-5} or better FEC (BER value determined before RS empirically).

ITU-T J.83/B defines different FEC frame formats for the two modulation modes used, i.e. 64QAM and 256QAM.

5.1.3.1 FEC Frame Format for 64QAM

For 64QAM, an FEC frame is formed by 60 RS blocks, each containing 128 symbols, to which

a frame sync trailer consisting of six 7-bit symbols is appended.

Fig. 5.7 FEC frame format for 64QAM

The frame sync word (FSYNC) consists of a fixed synchronization pattern of four 7-bit RS symbols (111 0101, 010 1100, 000 1101, 110 1100), followed by a 4-bit control word and 10 reserved bits that are set to zero.

The control word indicates the interleaving level and the interleaving mode. The meaning of the four bits is explained in Table 5.2.

5.1.3.2 FEC Frame for 256QAM

For 256QAM, an FEC frame is formed by 88 RS blocks, each containing 128 symbols, to which a frame sync trailer of 40 bits is appended.

Fig. 5.8 FEC frame format for 256QAM

The frame sync trailer consists of a fixed synchronization pattern of four bytes (0x71, 0xE8, 0x4D, 0xD4), followed by a 4-bit control word and four reserved bits that are set to zero.

The control word indicates the interleaving level and the interleaving mode. The meaning of the four bits is explained in Table 5.2.

5.1.4 Interleaver

Transmission errors usually corrupt not only a single bit but many bits following it in the data stream. Consequently the designation "error burst", which may comprise up to several hundred bits. The bits may even be deleted. The RS decoder correction capability of three symbols per RS block is insufficient in such cases. So an interleaver is used to insert – in the reduced interleaving mode – 8, 16, 32, 64 or 128 RS symbols (for the I = 8, 16, 32, 64 and 128 interleaver paths defined for the convolutional interleaver modes, see Fig. 5.9) from other RS blocks between neighbouring symbols of an RS block. This allows burst errors of max.

3 x 8	=	24	RS symbols
3 x 16	=	48	RS symbols
3 x 32	=	96	RS symbols
3 x 64	=	192	RS symbols
3 x128	=	384	RS symbols

to be corrected, provided that only three or fewer errored symbols per RS block occur after the deinterleaver in the receiver/decoder.

The enhanced interleaving mode provides for I = 128 paths with different memory depths of M = 1 to 8.

Reduced interleaving mode							
Paths	I = 8, 16, 32, 64, 128						
Interleaving depth of FIFOs	M = 1, 2, 4, 8, 16						
Enhanced interleavi	ng mode						
Paths	I = 128						
Interleaving depth of FIFOs	M = 1 to 8						
Synchronization	At beginning of FEC frame via first path						

Table 5.1 Level 2 interleaving

Convolutional interleaver

Fig. 5.9 Convolutional interleaver

The interleaving mode used (see Table 5.1) is indicated by the 4-bit control word of the frame sync trailer. Table 5.2 shows the interleaving level and the meaning of the control word in each case.

Depending on the interleaver configuration, level 1 (64QAM only) or level 2 (64QAM and 256QAM) interleaving capability is available.

	Level 1 interleaving for 64QAM												
Control			Inter	leaving	Ma	ax. lengtl	۱ T _E	_{rror} (μs)		Latency T _L (ms)			
word	Pa	ths	d	epth		of an error burst				of interleaver			
(4 bits)	(I)		(M)	64	QAM	25	56QAM		64QAM	256QAM		
XXXX	12	28		1	94			65.98		4.018			
	Level 2 interleaving for 64QAM and 256QAM												
Contr	ol			Interlea	ving	Max. le	engt	h T _{Error} (με	5)	Latency	T _L (ms)		
word	t	Pa	ths	dept	h	of a	n er	ror burst		of inter	rleaver		
(4 bit	s)	(I)	(M)		64QA	М	256QAN	Λ	64QAM	256QAM		
000	1	12	28	1		94.92	2	65.98		4.018	2.793		
001	1	6	4	2		47.46		32.99		1.993	1.386		
010	1	3	2	4		23.73	3 16.49		9 0.981		0.682		
011	1	1	6	8		11.80	86 8.25		8.25 0.475		0.330		
100	1	2	3	16		5.93		4.12		0.221	0.154		
101	1												
110	1					R	ese	rved					
111	1												
0000)	12	28	1		94.92	2	65.98		4.018	2.793		
0010)	12	28	2		189.8	3	132.0		8.036	5.586		
010)	12	28	3		284.8	3	197.9		12.06	8.379		
0110)	12	28	4		379.	7	263.9		16.07	11.17		
100)	12	28	5		474.0	6	329.9		20.09	13.97		
1010)	12	28	6		569.	5	395.9		24.11	16.76		
110)	12	28	7		664.4 461.9 28.13		28.13	19.55				
1110	5	12	28	8		759.4	1	527.8		32.15	22.35		

Table 5.2 Interleaving levels and control words

5.1.5 Randomizer

The randomizer provides for even distribution of the 7-bit RS symbols in the constellation diagram. This ensures constant power density across the ITU-T J.83/B spectrum and allows the demodulator to maintain stable synchronization.

Fig. 5.10 Randomizer

The randomizer adds a PRBS over a Galois field(128) polynomial defined as follows:

$$f(x) = x^3 + x + \alpha^3$$

where $\alpha^7 + \alpha^3 + 1 = 0$

The resulting combinations are 7 bits wide, each constituting exactly one RS symbol.

For synchronization, the three buffers of the randomizer are reset to zero during the synchronization bits of the frame sync trailer at the end of the RS FEC frame (see 5.1.3 "Reed-Solomon (RS) Forward Error Correction (FEC)"). The randomizer is enabled at the first RS symbol of the RS FEC frame, i.e. after the trailer, and disabled after the last RS symbol of the last RS block of the FEC frame. Thus the synchronization bits are not randomized.

Fig. 5.11. 'A' and 'B' symbols for 64QAM

5.1.6 Mapping of Randomized Data to 64QAM and 256QAM Symbols

So far, we have discussed only bits and RS symbols. To transmit this data using 64QAM/256QAM (quadrature amplitude modulation), it has to be converted to QAM symbols. As a first step to this effect, trellis groups are formed from the randomizer output data.

5.1.6.1 Mapping of Randomized Data to 64QAM Symbols

With 64QAM, a trellis group consists of 28 bits, i.e. four randomized RS symbols. The bits of the four symbols are resorted and organized in 'A' symbols and 'B' symbols as shown in Fig. 5.11.

The trellis group thus obtained is applied to the input of the 64QAM trellis coded modulator. In the input block of the 64QAM modulator, the 'A' and 'B' symbols are resorted a second time and the four MSBs and the two LSBs for the QAM mapper are generated. The four MSBs are input to the mapper uncoded, the two LSBs undergo differential encoding.

The data has the following structure:

Fig. 5.12 Second resorting of 'A' and 'B' symbols of a trellis group

Tabular	representation	of	trellis	group	symbols
after sec	cond resorting:				-

		64	QAM symb	ols							
	T_0 T_1 T_2 T_3 T_4										
	B ₂	B ₅	B ₈	B ₁₁	B ₁₃						
Directly	B ₁	B ₄	B7	B ₁₀	B ₁₂						
to	A ₂	A ₅	A ₈	A ₁₁	A ₁₃						
mapper	A ₁	A ₄	A7	A ₁₀	A ₁₂						
To diff.	B ₀	B ₃	B ₆	B ₉							
encoder	A ₀	A ₃	A ₆	A ₉							
	Time →										

Table 5.3 64QAM symbols of a trellis group

Table 5.3 shows that symbol T_4 has only four bits. The remaining two bits are generated by the trellis encoder and subsequent puncturing.

The above table also shows that the data of a trellis group corresponds to the five 6-bit 64QAM symbols T_0 , T_1 , T_2 , T_3 and T_4 .

Before being applied to the trellis encoder, the two LSBs undergo differential encoding, which considerably enhances decoding reliability of the ITU-T J.83/B receiver.

Fig. 5.13 Differential encoder

Differential encoding is based on the following equations:

X(j) = W(j) + X(j-1) + Z(j)(X(j-1) + Y(j-1)) and Y(j) = Z(j) + W(j) + Y(j-1) + Z(j)(X(j-1) + Y(j-1))

After differential encoding, each of the two bits is applied to a separate trellis encoder (binary convolutional coder (BCC) with k = 5).

The following generating codes are employed: G1 = 25 (octal) and G2 = 37 (octal).

Convolutional coding is followed by puncturing to a 4/5 code rate, i.e. the 2 x 4-bit BCC output data is converted to a serial data stream of 5-bit trellis groups.

Fig. 5.14 Binary convolutional coder (BCC) and puncturing to code rate 4/5

All single function blocks of a 64QAM modulator with trellis coding have now been introduced.

Note the assignment of the uncoded "A" and "B" bits (MSBs) and the coded "U" and "V" bits (LSBs) to the C0 to C5 64QAM symbols in the overall block diagram:

Fig. 5.15 64QAM modulator with trellis coding

The following overall code rate is obtained: 28/30 = 14/15

The 6-bit 64QAM symbols output by the QAM mapper are applied to the 64QAM modulator, which generates a constellation diagram with the 64QAM symbols mapped into bits as follows:

Fig. 5.16 64QAM constellation diagram for ITU-T J.83/B standard

The 64QAM symbols are $\sqrt{\cos}$ roll-off filtered analog pulses with a spectrum approximating a sin (x)/x function and eight amplitude levels for the I and the Q component. The eight amplitudes are represented by three bits each for I and Q.

Each symbol consists of a pair of I and Q values arranged orthogonally through modulation. 'I' stands for the in-phase and 'Q' for the quadrature component.

The resulting signals, therefore, have a defined flat spectrum (see Fig. 5.1 on the right).

5.1.6.2 Mapping of Randomized Data to 256QAM Symbols

For 256QAM, there are two types of trellis groups referred to as 'non-sync' and 'sync'. A non-sync trellis group consists of 38 data bits, a sync group of 30 data bits and 8 sync bits. Since each RS FEC frame comprises 88 RS blocks plus the 40-bit frame sync trailer, 2076 trellis groups per frame are obtained. The first 2071 trellis groups carry data bits only; the last 5 trellis groups carry 30 data bits and 8 sync bits each. The bits of the trellis groups are resorted and organized in 'A' symbols and 'B' symbols as shown in Fig. 5.17.

Fig. 5.17. 'A', 'B' and 'S' bits of 256QAM trellis groups

The trellis groups thus obtained are applied to the input of the 256QAM trellis coded modulator. In the input block of the 256QAM modulator, the 'A', 'B' and 'S' bits are resorted a second time, and the six MSBs and the two LSBs for the QAM mapper are generated. The six MSBs are input to the mapper uncoded, the two LSBs undergo differential encoding.

The data has the following structure:

Fig. 5.18 Second resorting of bits of trellis groups

Tabular representation of trellis group symbols after second resorting:

	256QAM symbols of non-sync trellis group										
	T_0 T_1 T_2 T_3 T_4										
	B ₃	B ₇	B ₁₁	B ₁₅	B ₁₈						
	B ₂	B ₆	B ₁₀	B ₁₄	B ₁₇						
Directly	B ₁	B ₅	B ₉	B ₁₃	B ₁₆						
to	A ₃	A ₇	A ₁₁	A ₁₅	A ₁₈						
mapper	A ₂	A ₆	A ₁₀	A ₁₄	A ₁₇						
	A ₁	A ₅	A ₉	A ₁₃	A ₁₆						
To diff.	B ₀	B ₄	B ₈	B ₁₂							
encoder	A ₀	A ₄	A ₈	A ₁₂							

Table 5.4 256QAM symbols of non-sync trellis group

	256QAM symbols of sync trellis group										
	T_0 T_1 T_2 T_3										
	B ₃	B ₇	B ₁₁	B ₁₅	B ₁₈						
	B ₂	B ₆	B ₁₀	B ₁₄	B ₁₇						
Directly	B ₁	B ₅	B ₉	B ₁₃	B ₁₆						
to	A ₃	A7	A ₁₁	A ₁₅	A ₁₈						
mapper	A ₂	A ₆	A ₁₀	A ₁₄	A ₁₇						
	A ₁	A ₅	A ₉	A ₁₃	A ₁₆						
To diff.	S ₁	S₃	S ₅	S ₇							
encoder	S ₀	S ₂	S ₄	S_6							

Table 5.5 256QAM symbols of sync trellis group

Table 5.3 shows that symbol T_4 has only six bits. The remaining two bits are generated by the trellis encoder and subsequent puncturing.

The above tables also show that the data of a trellis group corresponds to the five 8-bit 256QAM symbols T_0 , T_1 , T_2 , T_3 and T_4 .

Before being applied to the trellis encoder, the two LSBs undergo differential encoding, which considerably enhances decoding reliability of the ITU-T J.83/B receiver.

Fig. 5.19 Differential encoder

Differential encoding is based on the following equations:

$$X(j) = W(j) + X(j-1) + Z(j)(X(j-1) + Y(j-1))$$
 and
 $Y(j) = Z(j) + W(j) + Y(j-1) + Z(j)(X(j-1) + Y(j-1))$

After differential encoding, each of the two bits is applied to a separate trellis encoder (binary convolutional coder (BCC) with k = 5).

The following generating codes are employed: G1 = 25 (octal) and G2 = 37 (octal)

Convolutional coding is followed by puncturing to a 4/5 code rate, i.e. the 2 x 4-bit BCC output data is converted to a serial data stream of 5-bit trellis groups.

Input data	Convolutional coder output	Puncturing	Resorting to yield serial U- and V-bits data stream
	g,(j) g,(j+1) g,(j+2) g,(j+3)	g,(j+3)	
X(j) X(j+1) X(j+2) X(j+3) or or or or V(i) V(j+1) V(j+2) X(j+3)			$g_2(j)$ $g_2(j+1)$ $g_2(j+2)$ $g_1(j+3)$ $g_2(j+3)$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Fig. 5.20 Binary convolutional coder (BCC) and puncturing to code rate 4/5

All single function blocks of the 256QAM modulator with trellis coding have now been introduced.

Note the assignment of the uncoded "A" and "B" bits (MSBs) and the coded "U" and "V" bits (LSBs) to the C0 to C7 256QAM symbols in the overall block diagram:

Fig. 5.21 256QAM modulator with trellis coding

The following overall code rate is obtained: 38/40 = 19/20

The 8-bit 256QAM symbols output by the QAM mapper are applied to the 256QAM modulator, which generates a constellation diagram with the 256QAM symbols mapped into bits as follows:

								Q											
1110	1111	1110	1111	1110	1111	1110	1111	0000	0011	0100	0111	1000	1011	1100	111	<u> </u>			
1111	1101	1011	1001	0111	0101	0011	0001	1111	1111	1111	1111	1111	1111	1111	1114				
1100	1101	1100	1101	1100	1101	1100	1101	0000	0011	0100	0111	1000	1011	1100	1111	\searrow			<
1110	1100	1010	1000	0110	0100	0010	0000	1100	1100	1100	1100	1100	1100	1100	11Q0		<u></u>		
1010	1011	1010	1011	1010	1011	1010	1011	0000	0011	0100	0111	1000	1011	1100	1111				
1111	1101	1011	1001	0111	0101	0011	0001	1011	1011	1011	1011	1011	1011	1011	1011	\setminus	C3C	20100	
1000	1001	1000	1001	1000	1001	1000	1001	0000	0011	0100	0111	1000	1011	1100	1111	V			
1110	1100	1010	1000	0110	0100	0010	0000	1000	1000	1000	1000	1000	1000	1000	1000				
0110	0111	0110	0111	0110	0111	0110	0111	0000	0011	0100	0111	1000	1011	1100	1111				
1111	1101	1011	1001	0111	0101	0011	0001	0111	0111	0111	0111	0111	0111	0111	0111				
0100	0101	0100	0101	0100	0101	0100	0101	0000	0011	0100	0111	1000	1011	1100	1111				
1110	1100	1010	1000	0110	0100	0010	0000	0100	0100	0100	0100	0100	0100	0100	0100				
0010	0011	0010	0011	0010	0011	0010	0011	0000	0011	0100	0111	1000	1011	1100	1111				
1111	1101	1011	1001	0111	0101	0011	0001	0011	0011	0011	0011	0011	0011	0011	0011				
0000	0001	0000	0001	0000	0001	0000	0001	0000	0011	0100	0111	1000	1011	1100	1111				
1110	1100	1010	1000	0110	0100	0010	0000	0000	0000	0000	0000	0000	0000	0000	0000		_		
1110	1101	1010	1001	0110	0101	0010	0001	0000	0001	0000	0001	0000	0001	0000	0001	1			
0001	0001	0001	0001	0001	0001	0001	0001	0001	0011	0101	0111	1001	1011	1101	1111				
1110	1101	1010	1001	0110	0101	0010	0001	0010	0011	0010	0011	0010	0011	0010	0011				
0010	0010	0010	0010	0010	0010	0010	0010	0000	0010	0100	0110	1000	1010	1100	1110				
1110	1101	1010	1001	0110	0101	0010	0001	0100	0101	0100	0101	0100	0101	0100	0101				
0101	0101	0101	0101	0101	0101	0101	0101	0001	0011	0101	0111	1001	1011	1101	1111				
1110	1101	1010	1001	0110	0101	0010	0001	0110	0111	0110	0111	0110	0111	0110	0111				
0110	0110	0110	0110	0110	0110	0110	0110	0000	0010	0100	0110	1000	1010	1100	1110				
1110	1101	1010	1001	0110	0101	0010	0001	1000	1001	1000	1001	1000	1001	1000	1001				
1001	1001	1001	1001	1001	1001	1001	1001	0001	0011	0101	0111	1001	1011	1101	1111				
1110	1101	1010	1001	0110	0101	0010	0001	1010	1011	1010	1011	1010	1011	1010	1011				
1010	1010	1010	1010	1010	1010	1010	1010	0000	0010	0100	0110	1000	1010	1100	1110				
1110	1101	1010	1001	0110	0101	0010	0001	1100	1101	1100	1101	1100	1101	1100	1101				
1101	1101	1101	1101	1101	1101	1101	1101	0001	0011	0101	0111	1001	1011	1101	1111				
1110	1101	1010	1001	0110	0101	0010	0001	1110	1111	1110	1111	1110	1111	1110	1111				
1110	1110	1110	1110	1110	1110	1110	1110	0000	0010	0100	0110	1000	1010	1100	1110				

Fig. 5.22 256QAM constellation diagram for ITU-T J.83/B standard

The 256QAM symbols are $\sqrt{\cos}$ roll-off filtered analog pulses with a spectrum approximating a sin (x)/x function and 16 amplitude levels for the I and the Q component. The 16 amplitudes are represented by four bits each for I and Q.

Each symbol consists of a pair of I and Q values arranged orthogonally through modulation. 'I' stands for the in-phase and 'Q' for the quadrature component.

The resulting signals, therefore, have a defined flat spectrum (see Fig. 5.1 on the right).

5.2 64QAM and 256QAM Signal Bandwidths

5.2.1 64QAM Signal Bandwidth

The bandwidth is determined based on the specified R_{N64} net data rate for 64QAM, which is 26.97035 Mbit/s. From the net data rate, the gross data rate is calculated as follows:

$$\mathsf{R}_{\mathsf{G64}} = \mathsf{R}_{\mathsf{N64}} * \frac{((122+6)*7*60)+42}{122*7*60} * \frac{15}{14} \,\mathsf{Mbit/s}$$

= 30.34164375 Mbit/s

Each 64QAM symbol takes up 6 bits of the R_{G64} gross data rate. From this, the symbol rate S is obtained which, expressed in Hz, constitutes the signal bandwidth:

$$\mathsf{BW}_{64} = \frac{30.34164375}{6} = 5.056940625 \text{ MHz}$$

The M/NTSC channel bandwidth is $BW_{Channel} = 6 MHz$

Based on the signal bandwidth $BW_{64} = 5.056940625 \text{ MHz}$

the optimal roll-off factor r is calculated as follows:

$$r = 1 - \frac{BW_{Channel}}{BW_{64}} = 1 - \frac{6.0}{5.056940625} = 0.186488$$

which is 18.6488 % expressed in percent. The ITU-T J.83/B standard defines an 18 % rolloff factor for 64QAM.

5.2.2 256QAM Signal Bandwidth

The bandwidth is determined based on the specified net data rate R_{N256} for 256QAM, which is 38.81070 Mbit/s. From the net data rate, the gross data rate is calculated as follows:

$$\mathsf{R}_{\mathsf{G256}} = \mathsf{R}_{\mathsf{N256}} * \frac{((122+6)*7*88)+40}{122*7*88} * \frac{20}{19} \,\mathsf{Mbit/s}$$

= 42.884294869 Mbit/s

Each 256QAM symbol takes up 8 bits of the R_{G256} gross data rate. From this, the symbol rate S is obtained which, expressed in Hz, constitutes the signal bandwidth:

$$BW_{256} = \frac{42.884294869}{8} = 5,360536858625 MHz$$

The M/NTSC channel bandwidth is
 $BW_{Channel} = 6 MHz$

Based on the signal bandwidth $BW_{256} = 5.360536858625 \text{ MHz}$

the optimal roll-off factor r is calculated as follows:

$$r = 1 - \frac{BW_{Channel}}{BW_{256}} = 1 - \frac{6.0}{5.360536858625} = 0.119291$$

which is 11.9291 % expressed in percent. The ITU-T J.83/B standard defines a 12 % roll-off factor for 256QAM.

5.2.3 $\sqrt{\cos}$ Filtering at Transmitter and Receiver End

The symbols shaped by $\sqrt{\cos}$ filters in the transmitter and the receiver yield a spectrum similar to a sin x/x function with a constant amplitude- and group-delay frequency response.

 $\sqrt{\cos \text{filtering}}$ in the transmitter and the receiver produces spectrum edges as shown in Fig. 5.24 "Spectrum obtained by cos roll-off filtering". The degree of approximation to an ideal sinx/x spectrum depends on the selected roll-off factor. The smaller this factor, the better the approximation to an ideal sinx/x spectrum.

Plotting the level along a linear scale, the following theoretical spectrum will be obtained at the output of an ITU-T J.83/B modulator:

Fig. 5.23 Spectrum obtained by $\sqrt{\cos}$ filtering Clearly discernible are the steep edges at low levels at the left and right boundaries of the

spectrum produced by \sqrt{cos} filtering. Attenuation at the Nyquist frequencies $f_C \pm f_N$ /2 is 3 dB.

The roll-off factor r is based on the ratio of the Nyquist bandwidth to the flat "rooftop" of the spectrum:

$$r = \frac{f_N}{\Delta f} - 1$$

 \sqrt{cos} filtering in the transmitter and the receiver yields spectrum edges with a cos roll-off characteristic.

Fig. 5.24 Spectrum obtained by cos roll-off filtering

It can be seen that with cos filtering the edges at low levels at the left and right boundaries of the spectrum are flatter and rounder. Attenuation at the Nyquist frequencies $f_C \pm f_N / 2$ is now 6 dB.

To illustrate this, Fig. 5.25 shows the $\sqrt{\cos}$ and cos filter edges in greater detail:

cos roll-off filtering

Combined filtering in the transmitter and the receiver serves three purposes:

- 1. The Nyquist criterion is fully met, so the transmitted signal can be retrieved accurately and error-free at the receiver end.
- 2. In case of noisy transmissions, combined transmitter and receiver $\sqrt{\cos}$ filtering enables optimal noise filtering in the receiver.
- 3. By signal filtering in the receiver, useful channel selection is effected at the same time.

The required bandwidth for the transmission channel (B_{Ch}) is derived from the symbol rate S and the roll-off factor r as follows:

$$BW_{Ch} = S*(1+r) MHz$$

5.3 ITU-T J.83/B Key Data

QAM mode	64	
	256	
Symbol form		Similar to $\frac{\sin x}{x}$
		cos roll-off filtered
Roll-off factor	64QAM	0.18
	256QAM	0.12
Net bit rate R (Mbit/s)	64QAM	26.97035
	256QAM	38.81070
Gross bit rate R (Mbit/s)	64QAM	30.34164375
	256QAM	42.884294869
Symbol rate S (Msymb/s)	64QAM	5.056940625
	256QAM	5.360536858625

Table 5.6

5.3 Data Rates and Symbol Rates in ITU-T J.83/B

An MPEG2 multiplexer or an MPEG2 generator supplies video, audio and other data in the form of TS (transport stream) packets with a defined data rate R. ITU-T J.83/B specifies two gross data rates:

Gross data rate for 64QAM:

R_{G64} = 30.34164375 Mbit/s

Gross data rate for 256QAM:

R_{G256} = 42.884294869 Mbit/s

Each symbol carries

6 bits for 64QAM or 8 bits for 256QAM of the MPEG2 data stream, i.e. three or four bits each for the I and the Q component.

This yields the following symbol rates:

The above data rates and symbol rates must be accurately complied with. Deviations $> 1 * 10^{-5}$ might cause signal processing in the transmitter and, even more critically, in the receiver to fail, since the quartz PLLs reach the limits of their pull-in range. Monitoring and measuring the data and symbol rates is therefore a must.

The data rates specified by ITU-T J.83/B for 64QAM and 256QAM can be changed on the Rohde & Schwarz TV Test Transmitters R&S SFQ and R&S SFL-J by changing the symbol rate as follows:

For 64QAM:

between 4.5 Msymb/s and 5.625 Msymb/s (corresponding to a variation of the gross data rate between 27.0 Mbit/s and 33.75 Mbit/s)

For 256QAM:

between 4.8 Msymb/s and 5.9 Msymb/s (corresponding to a variation of the gross data rate between 38.4 Mbit/s and 47.2 Mbit/s).

The pull-in range of the symbol rate PLL of settop boxes (STBs) for the American ITU-T J.83/B cable standard can thus easily be monitored. The setting range for the symbol rate is in either case much larger than the actual pull-in range of the STB's PLL.

For measurements to the ITU-T J.83/B digital television (DTV) standard, the R&S SFQ and the R&S SFL-J modulate the TS data stream strictly in accordance with specifications. In addition, defined modulation errors can be introduced into the ideal signal, for example a symbol rate deviating from the ideal value, and thus reproducible signal degradation created. Such stress signals are indispensable in DTV receiver tests to determine the system limits.

TV Test Transmitter R&S SFQ

Condensed data of R&S SFQ

Frequency range MPEG2 inputs0.3 MHz to 3.3 GHz ASI SPI TS PARALLELError simulation I/Q amplitude imbalance I/Q phase error Residual carrier±25 % ±10 ° 0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rate Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSKDVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation FFT mode Bandwidth PuncturingQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 4QAM, 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM 5.0		
MPEG2 inputsASI SPI TS PARALLELError simulation //Q amplitude imbalance //Q phase error Residual carrier±25 % ±10 ° 0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK 2/3, 5/6, 8/9DVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Duta rate Symbol rate8VSB 6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Notulation Input data rate Symbol rate6 MHz 6 MHz 6 MHz 6 MHz 5.3605 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM 5.05	Frequency range	0.3 MHz to 3.3 GHz
SPI TS PARALLELError simulation //Q amplitude imbalance //Q phase error Residual carrier±25 % ±10 ° 0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rate Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8 BPSK 2/3, 5/6, 8/9 16QAMDVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation Bandwidth PuncturingQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 64QAM, 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.0569 Msymb/s fo	MPEG2 inputs	ASI
Error simulation VQ amplitude imbalance (VQ phase error Residual carrierTS PARALLEL±25 % ±10 ° 0 % to 50 %±25 % ±10 ° 0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rate Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK 2/3, 5/6, 8/9DVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation Eandwidth PuncturingQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rateBVSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 6 MHz 5.3605 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.3605 M	·	SPI
Error simulation I/Q amplitude imbalance I/Q phase error Residual carrier±25 % ±10 ° 0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S ModulationQPSK 2/3, 3/4, 5/6, 7/8Modulation Code rate ModulationQPSK 2/3, 5/6, 8/9DVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8TU-T J.83/B Bandwidth Modulation Input data rate Symbol rate8VSB 6 MHz 6 MHz 5.3605 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 225QAM 5.3605 Msymb/s for 225QAM Symbol rate ±10 %Data interleaver Internal test signalslevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		
Entor Simulation I/Q amplitude imbalance I/Q phase error Residual carrier $\pm 25 \%$ $\pm 10 °$ 0% to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S ModulationQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK Code rateModulation Code rateQPSK 2/3, 5/6, 8/9Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation FFT mode Bandwidth PuncturingQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s $\pm 10 \%$ 10.762 Msymb/s $\pm 10 \%$ ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 AMHz 5.3605 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate $\pm 10 \%$ Data interleaver Internal test signalslevel 1 and level 2 null TS packets, null PRBS packets, PRBS (2^{23} -1 and 2^{15} -1)Optionsfading simulator, noise generator, input interface, BER measurement	Error cimulation	TOTAIRALLEL
UQ amplitude imbalance I/Q phase error Residual carrier ± 25 % $\pm 10^{\circ}$ 0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8Modulation Code rateQPSK 2/3, 5/6, 8/9Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 6 MHz 6 4QAM, 256QAM 26.970 Mbit/s for 256QAM 38.8107 Mbit/s for 256QAM 5.3665 Msymb/s for 2256QAM 5.3605 Msymb/s for 2256QAM 5.3605 Msymb/s for 2256QAM symbol rateSymbol rate Data interleaver Internal test signals6 MHz 6 AMZ 26.970 Mbit/s for 256QAM 3.8605 Msymb/s for 226QAM 3.605		
I/Q phase error Residual carrier $\pm 10^{\circ}$ 0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rateQPSK 2/3, 5/6, 8/9Modulation Code rateQPSK 2/3, 5/6, 8/9Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ± 10 % 10.762 Msymb/s ± 10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 6 AMz 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for	I/Q amplitude impalance	±25 %
Residual carrier0 % to 50 %Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S ModulationQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK Code rateModulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSKDVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kBandwidth PuncturingQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 226QAM 5.0569 Msymb/s for 64QAM, 5.0569 Msymb/s for 64QAM, 5.0569 Msymb/s for 64QAM, 5.0569 Msymb/s for 64QAM, 5.0569 Msymb/s for 2256QAM symbol rate ±10 %Data interleaver Internal test signalsnull TS packets, null TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	I/Q phase error	±10 °
Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK Code rateModulation Code rateQPSK 2/3, 5/6, 8/9Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T Modulation FFT mode Bandwidth PuncturingQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Internal test signals1 cvel 1 and level 2 null TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Residual carrier	0 % to 50 %
Special functionsscrambler, Reed-Solomon encoder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S ModulationQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK Code rateModulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 AMz 5.3605 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Internal test signalslevel 1 and level 2 null TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		
SystemsSolution, Recorder, all interleavers can be switched offDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S ModulationQPSK 1/2, 2/3, 3/4, 5/6, 7/8Modulation Code rateQPSK 2/3, 5/6, 8/9Modulation Code rate16QAM 3/4, 7/8DVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kPVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kATSC Modulation Bandwidth Puncturing8VSB 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Input data rate Symbol rate6 MHz 6 MHz 6 AMz 5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Internal test signalslevel 1 and level 2 null TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Special functions	scrambler Reed-Solomon
InterferenceInterferenceDVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S ModulationQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK Code rateModulation Code rate2/3, 5/6, 8/9Modulation Code rate1/2, 2/3, 3/4, 5/6, 7/8 8PSKDVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kDVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kBandwidth PuncturingQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 AHz 6 AMz 26.970 Mbit/s for 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Internal test signalslevel 1 and level 2 null TS packets, nul PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		encoder, all interleavers can be
DVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8 8PSK Code rateModulation Code rateQPSK 1/2, 2/3, 5/6, 8/9Modulation Code rate2/3, 5/6, 8/9 16QAM Code rateDVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 %ITU-T J.83/B Bandwidth Input data rate Symbol rate6 MHz 6 4QAM, 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Internal test signalslevel 1 and level 2 null TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		encoder, all interieavers can be
DVB-C Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-S Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8Modulation Code ratePSK 2/3, 5/6, 8/9Modulation Code rateQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8DVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 AQAM, 256QAM 26.970 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Internal test signals101 TS packets, null TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		Switched on
DVB-CI6QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-SQPSKModulationQPSKCode rate1/2, 2/3, 3/4, 5/6, 7/8Modulation2/3, 5/6, 8/9Modulation16QAMCode rate2/3, 5/6, 8/9Modulation16QAMCode rate3/4, 7/8DVB-TQPSK, 16QAM, 64QAM; non-hierarchical, hierarchicalFFT mode8k and 2kBandwidth6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC8VSBModulation8VSBBandwidth6 MHzData rate19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth6 MHzModulation6 MHzNodulation6 MHzSymbol rate5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		
Modulation16QAM, 32QAM, 64QAM, 128QAM, 256QAMDVB-SModulationQPSKModulationQPSKCode rate1/2, 2/3, 3/4, 5/6, 7/8Modulation2/3, 5/6, 8/9Modulation16QAMCode rate3/4, 7/8DVB-TQPSK,16QAM, 64QAM; non-hierarchical, hierarchicalFFT modeBandwidth PuncturingFTT mode8k and 2kBandwidth6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC8VSBModulation8VSBBandwidth6 MHzData rate19.392658 Mbit/s ±10 %Symbol rate10.762 Msymb/s ±10 %ITU-T J.83/B6 MHzBandwidth Modulation Input data rate6 MHzSymbol rate5.3605 Msymb/s for 256QAMSymbol rate1.0569 Msymb/s for 256QAMSymbol rateItul TS packets, null TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	DVB-C	
DVB-S128QAM, 256QAMModulationQPSKCode rate1/2, 2/3, 3/4, 5/6, 7/8Modulation2/3, 5/6, 8/9Modulation16QAMCode rate3/4, 7/8DVB-TQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2kBandwidthGMHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSCModulationModulation8VSBBandwidth6 MHzData rate19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B6 MHzBandwidth6 MHzModulation6 MHzSymbol rate26.970 Mbit/s for 64QAM, 5.3605 Msymb/s tor 64QAM, 5.3605 Msymb/s for 256QAMSymbol rateInput data rate symbol rateData interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Modulation	16QAM, 32QAM, 64QAM,
DVB-SQPSKModulationQPSKCode rate1/2, 2/3, 3/4, 5/6, 7/8Modulation2/3, 5/6, 8/9Modulation16QAMCode rate3/4, 7/8DVB-TQPSK,16QAM, 64QAM; non-hierarchical, hierarchicalFFT mode Bandwidth8k and 2kPuncturing6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC8VSBModulation8VSBBandwidth6 MHzData rate19.392658 Mbit/s ±10 %Symbol rate10.762 Msymb/s ±10 %ITU-T J.83/B6 MHzBandwidth Modulation6 MHzSymbol rate5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAMSymbol ratelevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		128QAM, 256QAM
Modulation Code rateQPSK 1/2, 2/3, 3/4, 5/6, 7/8Modulation Code rate8PSK 2/3, 5/6, 8/9Modulation Code rate16QAM 3/4, 7/8DVB-T ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 %ITU-T J.83/B Bandwidth nput data rate Symbol rate6 MHz 6 MHz 6 AMz 6 AMz 6 MHz 6 Symbol rateSymbol rate6 MHz 10.762 Msymb/s ±10 %Symbol rate5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM<	DVB-S	
Code rate Modulation Code rate1/2, 2/3, 3/4, 5/6, 7/8 8PSKModulation Code rate2/3, 5/6, 8/9 16QAM 3/4, 7/8DVB-T ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Setting range6 MHz 6 MHz 6 AMHz 6 AMHz 	Modulation	OPSK
Modulation Code rateHZ, BO, ON, OB, HDModulation Code rateBPSK 2/3, 5/6, 8/9 16QAM 3/4, 7/8DVB-T ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 MHz 6 AMz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 MHz 6 AMz 6 4QAM, 256QAM 26.970 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Code rate	1/2 2/3 3/4 5/6 7/8
Internal test signalsOf OK 2/3, 5/6, 8/9Modulation Code rate2/3, 5/6, 8/9 16QAM 3/4, 7/8DVB-T ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 MHz 6 MHz 6 4QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Modulation	8DSK
Code rate2/3, 5/6, 8/9Modulation16QAMCode rate3/4, 7/8DVB-TQPSK,16QAM, 64QAM; non-hierarchical, hierarchicalFFT mode8k and 2kBandwidth6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSCModulationModulation8VSBBandwidth6 MHzData rate19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %Symbol rate10.762 Msymb/s ±10 %ITU-T J.83/B6 MHzBandwidth6 MHzModulation6 MHzInput data rate5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Codo rato	
Nideulation16QAM $3/4, 7/8$ DVB-T ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ± 10 % 10.762 Msymb/s ± 10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 10.762 Msymb/s ± 10 %Symbol rate6 MHz 19.392658 Mbit/s ± 10 % 10.762 Msymb/s ± 10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ± 10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2^{23} -1 and 2^{15} -1)Optionsfading simulator, noise generator, input interface, BER measurement		2/3, 5/6, 8/9
Code rate3/4, 7/8DVB-T ModulationQPSK, 16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %Symbol rate6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 5.0569 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Setting range Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	wodulation	16QAM
DVB-T ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %Symbol rate6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Code rate	3/4, 7/8
DVB-T ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %Symbol rate6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		
ModulationQPSK,16QAM, 64QAM; non-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Data rate Symbol rate6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate Symbol rate6 MHz 6 MHz 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 MHz 6 4QAM, 256QAM 26.970 Mbit/s for 64QAM, 5.0569 Msymb/s for 256QAM 5.0569 Msymb/s for 256QAM 5.0650 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	DVB-T	
FFT mode Bandwidth Puncturingnon-hierarchical, hierarchical 8k and 2k 6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 MHz 10.762 Msymb/s ±10 %Symbol rate6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 5.0569 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaver Internal test signalslevel 1 and level 2 null TS packets, pRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Modulation	QPSK 16QAM 64QAM
FFT mode Bandwidth PuncturingInterfactioned, metal-childerATSC Modulation Bandwidth Data rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 MHz 10.762 Msymb/s ±10 %Symbol rate6 MHz 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 5.0569 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Symbol rateIture there is a symbol rate the symbol rate		non-hierarchical hierarchical
ATT HindsoBandwidth Puncturing6 MHz, 7 MHz, 8 MHz to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 6 4QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Setting rangelevel 1 and level 2 null TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	FFT mode	9k and 9k
Data barlowidth Puncturing6 MH2, 7 MH2, 8 MH2 to code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Setting rangeIevel 1 and level 2 null TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Bandwidth	
Punctulingto code rate 1/2, 2/3, 3/4, 5/6, 7/8ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Symbol rate0.762 Msymb/s ±10 %Symbol rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 5.0569 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, nUll PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Duncturing	
ATSC Modulation Bandwidth Data rate Symbol rate8VSB 6 MHz 19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Symbol rate0.0659 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Puncluring	to code rate 1/2, 2/3, 3/4, 5/6, 7/8
ATSC Modulation 8VSB Bandwidth 6 MHz Data rate 19.392658 Mbit/s ±10 % Symbol rate 10.762 Msymb/s ±10 % ITU-T J.83/B 6 MHz Bandwidth 6 MHz Modulation 64QAM, 256QAM Input data rate 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM Symbol rate 5.0569 Msymb/s for 256QAM Setting range symbol rate ±10 % Data interleaver level 1 and level 2 Internal test signals null TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1) Options fading simulator, noise generator, input interface, BER measurement		
Modulation Bandwidth8VSB 6 MHzData rate Symbol rate19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Symbol rate Data interleaverIevel 1 and level 2 null TS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	AISC	
Bandwidth Data rate6 MHzData rate19.392658 Mbit/s ±10 %Symbol rate10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Setting rangeIevel 1 and level 2Internal test signalsnull TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Modulation	8VSB
Data rate Symbol rate19.392658 Mbit/s ±10 % 10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Setting rangeinterleaverData interleaverlevel 1 and level 2Internal test signalsnull TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Bandwidth	6 MHz
Symbol rate10.762 Msymb/s ±10 %ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM symbol rate ±10 %Symbol rate0.0659 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Data rate	19 392658 Mbit/s +10 %
ITU-T J.83/B 6 MHz Bandwidth 6 4QAM, 256QAM Input data rate 6 4QAM, 256QAM Symbol rate 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM Setting range symbol rate ±10 % Data interleaver level 1 and level 2 Internal test signals null TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1) Options fading simulator, noise generator, input interface, BER measurement	Symbol rate	10.762 Meympl/s ± 10.9
ITU-T J.83/B Bandwidth Modulation Input data rate6 MHz 64QAM, 256QAM 26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Setting rangesymbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	eyer.rate	10.762 WISYTID/S ±10 %
Bandwidth 6 MHz Modulation 64QAM, 256QAM Input data rate 26.970 Mbit/s for 64QAM, Symbol rate 5.0569 Msymb/s for 256QAM Setting range 5.0650 Msymb/s for 256QAM Data interleaver level 1 and level 2 Internal test signals null TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1) Options fading simulator, noise generator, input interface, BER measurement		
Baltitivituin 6 MHz Modulation 64QAM, 256QAM Input data rate 26.970 Mbit/s for 64QAM, Symbol rate 38.8107 Mbit/s for 256QAM Setting range 5.0569 Msymb/s for 256QAM Setting range symbol rate ±10 % Data interleaver level 1 and level 2 Internal test signals null TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1) Options fading simulator, noise generator, input interface, BER measurement	Bondwidth	
Modulation64QAM, 256QAMInput data rate26.970 Mbit/s for 64QAM,Symbol rate38.8107 Mbit/s for 256QAMSetting range5.0569 Msymb/s for 256QAMData interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Danuwium	6 MHz
Input data rate26.970 Mbit/s for 64QAM, 38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 256QAM 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	wodulation	64QAM, 256QAM
Symbol rate38.8107 Mbit/s for 256QAM 5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Input data rate	26.970 Mbit/s for 64QAM,
Symbol rate5.0569 Msymb/s for 64QAM, 5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		38.8107 Mbit/s for 256QAM
Setting range5.3605 Msymb/s for 256QAM symbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement	Symbol rate	5.0569 Msymb/s for 64QAM.
Setting rangeSource insymbol rate ±10 %Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1)Optionsfading simulator, noise generator, input interface, BER measurement		5 3605 Msymb/s for 2560AM
Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2^{23} -1 and 2^{15} -1)Optionsfading simulator, noise generator, input interface, BER measurement	Setting range	α mbol rate $\pm 10.\%$
Data interleaverlevel 1 and level 2Internal test signalsnull TS packets, null PRBS packets, PRBS (2^{23}-1 and 2^{15}-1)Optionsfading simulator, noise generator, input interface, BER measurement	3 3	Symbol rate ±10 %
Data internet event level 1 and level 2 Internal test signals null TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1) Options fading simulator, noise generator, input interface, BER measurement	Data interleaver	
Internal test signalsnull TS packets, null PRBS packets, PRBS (2^{23} -1 and 2^{15} -1)Optionsfading simulator, noise generator, input interface, BER measurement	Data interleaver	level 1 and level 2
Options null TS packets, null PRBS packets, PRBS (2 ²³ –1 and 2 ¹⁵ -1) fading simulator, noise generator, input interface, BER measurement	Internal toot sizes la	
Options fading simulator, noise generator, input interface, BER measurement	Internal test signals	null TS packets,
Options PRBS (2 ²³ –1 and 2 ¹⁵ -1) fading simulator, noise generator, input interface, BER measurement		null PRBS packets,
Options fading simulator, noise generator, input interface, BER measurement		PRBS $(2^{23} - 1 \text{ and } 2^{15} - 1)$
Options fading simulator, noise generator, input interface, BER measurement		
Options fading simulator, noise generator, input interface, BER measurement		
noise generator, input interface, BER measurement	Options	fe die er einersteten
noise generator, input interface, BER measurement		lading simulator,
input interface, BER measurement		noise generator,
BER measurement		input interface,
		BER measurement

TV Test Transmitter R&S SFL-J

Condensed data of R&S SFL-J

Frequency range	5 MHz to 1.1 GHz
Level range	0 dBm to -140 dBm
MPEG2 inputs	ASI
	TS PARALLEL
Error simulation	
I/Q amplitude imbalance I/Q quadrature offset	±25 %
(phase error)	±10 °
Residual carrier	0 % to 50 %
Special functions	scrambler, Reed-Solomon encoder, all interleavers can be switched off
Modulation	64QAM, 256QAM
Internal test signals	null TS packets, null PRBS packets, PRBS (2 ²³ -1 and 2 ¹⁵ -1)
Option	Noise Generator R&S SFL-N on request

5.4 Important Requirements To Be Met By ITU-T J.83/B Test Transmitters

This section deals in particular with the requirements to be met by TV test transmitters supplying signals for ITU-T J.83/B compliance measurements.

Test transmitters are needed to simulate potential errors in the DTV modulator and distortions in the transmission channel. From the two types of signal degradation it is determined to what extent a receiver still operates correctly when nonconforming signals are applied. For tests on an ITU-T J.83/B set-top box (STB), for example, the test transmitter should be capable of producing defined deviations from the standard in addition to the common parameter variations of, for example, transmit frequency and output level.

STBs have to undergo function tests in at least three frequency ranges:

- in the lowest RF channel,
- in a middle RF channel, and
- in the highest RF channel.

The TV Test Transmitters R&S SFQ and R&S SFL-J are capable of setting any frequency between 0.3 MHz and 3.3 GHz, thus offering a frequency range by far exceeding that of ITU-T J.83/B. Frequencies of interest can also be stored in channel tables.

RF FREQUENCY	RF LEVEL MODU -30.0 dBm J.83/B			64QAM	
RF FREQUENCY	RF L	EVEL	м	DDULATION	I∕Q CODER
RF FREQUENCY		EDIT			
FREQUENCY	÷	2 1000.000 MHz			
FREQUENCY SHIFT	÷	0.000 MHz			
CHANNEL CHANNEL TABLE	, ≯	NONE			

Fig. 5.26 Frequency setting on R&S SFQ

Another test is for verifying error-free reception at a minimum level of typically -70 dBm. The R&S SFQ features a setting range between +6 dBm and -99 dBm, and the R&S SFL-J between 0 dBm and -140 dBm, which in any case includes the required minimum level.

RF FREQUENCY		RF LEV	RF LEVEL		ILATION
1000.000 MHz		-30.0	dBm	J.83∕B	64QAM
RF FREQUENCY	RF	LEVEL	EVEL MODULATION		I∕Q CODER
RF LEVEL RF LEVEL RF LEVEL SHIFT RF LEVEL MODE	-	EDIT	-30 MAL	0.0 dBm 0.00 dB	
RF ALC MODE RF ALC OFF MODE RF ALC SEARCH O RF ALC LEARN TA	= INCE IBLE	→ AUT → TAB PAS	O LE SED		
				F2=STATL	IS

In the ITU-T J.83/B modulation mode, modulatorand transmission-specific settings can be made, including noise superposition and the generation of fading profiles. The R&S SFQ and the R&S SFL-J are capable of simulating all signal variations and degradations occurring in a real ITU-T J.83/B system. The degraded signal generated by the R&S SFQ or R&S SFL-J "stress transmitter" is used for testing the STB's susceptibility to errors and interference.

EL KOOULATION	I/Q CODER EXUTAX	805500WP
ITU-T-J.83/18	EDIT	
12168		
Open → L/Q Finase Error → Cardinical Suppression → L/Q Final, Instal, ance → NUISE → Fadoro → CW/NODULATION →		6 000HAL 0.0 0EG 0.0 % 0.0 % 0.0 %
	170 170 PHASE ERROR → CAROLER SUPPRESSION → 170 AMPL, IMBALANCE → NOTSE → FADINE → CW/MODULATION F2=STAT	L*0 IN 1*0 PHASE ERROR → CAROLER SUPPRESSION → → CAROLER SUPPRESSION → → NOISE → FORM → CAROLER SUPPRESSION → →

Fig. 5.28 Setting of modulator- and transmission-specific parameters for ITU-T J.83/B standard on R&S SFQ

Detailed information on the above parameters will be found in section 5.8 "QAM Parameters".

Further important settings for the ITU-T J.83/B standard can be made in the I/Q CODER menu. Here the TS parameters for the modulator can be selected.

1000.000	MHz	-30.04	im J.83/B	640.AM	5.057 MSyn/r
IF FREQUENCY	MP L	EVEL	HOOULATION	1/1Q CODER	10120001
1/0 CINER		EDT ON	F0)	MEASURE	
INPUT SELECT INPUT DATA BATE USEFUL DATA BATE SV250U-FATE HODE ROLL OFF INTERLEAVER HOD SPECIAL	* ****	851 (1407.07.07.07.07.07.07.07.07.07.07.07.07.0		26.971 H 9.666 H	Bit/s

Fig. 5.29 Settings for ITU-T J.83/B standard in I/Q CODER menu on R&S SFQ

It is with respect to the INTERLEAVER MODE settings that the ITU-T J.83/B system greatly

differs from the DVB systems.

Whereas the convolutional interleaver mode is fixed for DVB (12 paths and FIFO interleaving depth of M = 17), the ITU-T J.83/B standard allows a variety of modes for the convolutional interleaver. A detailed description of the convolutional interleaver will be found in section 5.1.4.

1000.000	MHz	-30.0 dfm J.83		J.83/B	640AM	SYMBOLRATE 5.057 HSum/s	
RF FREQUENCY	RFI	EVEL	"	OULATION	1/0 CODER	лессална	
I/O CODER INPUT SELECT INPUT DATA BATE USEFUL DATA BATE SVHBDL RATE HODE ROLL OFF FINTERLEAVER HODE SPECIAL	4 446 4	(5,1) (64,2) (64,2) (32,4) (16,8) (6,16) (7,22) (7,22) (7,22) (128,1)	(CTF (000) (000) (010) (011) (100) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (00) (0	L MORD) DUBUUTER20 1,LEWEL2) 1			

Fig. 5.30 Interleaver settings on R&S SFQ

All parameter values listed in Table 5.2 "Interleaving levels and control words" can be set.

5.5 Power Measurement

Measurement of the output power of a DTV transmitter is not as simple as that of an analog transmitter. In the analog world, the actual power of the sync pulse floor is measured at a sufficiently large bandwidth and displayed as the actual sync pulse peak power. A DTV signal, by contrast, is characterized by a constant power density across the Nyquist bandwidth (see Fig. 5.31), which results from energy dispersal and symbol shaping in the DTV modulator. Consequently, only the total power in a DTV channel is measured.

Fig. 5.31

Constant power density in ITU-T J.83/B channel

5.5.1 Mean Power Measurement with Power Meter R&S NRVS and Thermal Power Sensor

Condensed data of Power Meter R&S NRVS with Thermal Power Sensor R&S NRV-Z51

R&S NRVS	
Frequency range	DC to 40 GHz
Level range	100 pW to 30 W
-	(depending on sensor)
Readout	
Absolute	W, dBm, V, dBmV
Relative	dB,
	% W or % V,
	referred to a stored
	reference value
Remote control	IEC 625-2/IEEE 488.2
	interface
Max. input voltage	50 V
R&S NRV-Z51	
Power sensor	thermal
Impedance	50 O
Connector	N type
Frequency range	DC to 18 GHz
Level range	1 µW to 100 mW

Thermal power meters supply the most accurate results if there is only one ITU-T J.83/B channel in the overall spectrum.

Plus, they can easily be calibrated by performing a highly accurate DC voltage measurement, provided the sensor is capable of DC measurement. To measure the ITU-T J.83/B power, however, the ITU-T J.83/B signal should be absolutely DC-free.

5.5.2 Mean Power Measurement with Spectrum Analyzer R&S FSEx, R&S FSP or R&S FSU

If a conventional spectrum analyzer is used to measure power, its maximum measurement bandwidth will not be sufficient for a 6 MHz QAM cable channel. State-of-the-art spectrum analyzers, by contrast, allow broadband power measurements between two user-selected frequencies. The large Nyquist bandwidth of DTV signals poses therefore no problems. Moreover, all kinds of amplitude frequency response that may occur in a cable network are taken into account, whether these are just departures from flat or caused by echoes. The Rohde & Schwarz Spectrum Analyzers R&S FSEx, R&S FSP and R&S FSU thus measure mean power in a DTV channel with an accuracy of \leq 1.5 dB.

Fig. 5.32a Power measurement with frequency cursors covering Nyquist bandwidth

Fig. 5.32b Power measurement with frequency cursors covering channel bandwidth

A frequency cursor is placed on the lower and another one on the upper frequency of the ITU-T J.83/B channel. The spectrum analyzer calculates the power for the band between the cursors. The method provides sufficient accuracy as long as the channels are sufficiently spaced in frequency and thus clearly separated. Given the normal ITU-T J.83/B channel assignment, i.e. without guard channels, results may be falsified however. It is therefore recommended that power measurements be performed automatically by means of a test receiver as described in section 5.5.3.

SPECTRUM ANALYZER R&S FSP

Condensed	etch	of	R&S	FSD
Condensed	uala	0I	κασ	FOF

Frequency range (R&S FSP3/7/13/30)	9 kHz to 3/7/13/30 GHz
Amplitude measurement range	-140 dBm to +30 dBm
Amplitude display range	10 dB to 200 dB in steps of 10 dB, linear
Amplitude measurement error	<0.5 dB up to 3 GHz, <2.0 dB from 3 GHz to 13 GHz, <2.5 dB from 13 GHz to
Resolution bandwidth	20 GHz 1 Hz to 30 kHz (FFT filters), 10 Hz to 10 MHz in 1, 3 logarithmic scaling, EMI bandwidths: 200 Hz, 9 kHz, 120 kHz
Detectors	max peak, min peak, auto peak, quasi peak, sample, average, rms
Display	21 cm (8.4") TFT LC colour display,
Remote control	VGA resolution IEC 625-2/IEEE 488.2 (SCPI 1997.0) or RS-232-C
Dimensions (W x H x D) Weight (R&S FSP3/7/13/30)	412 mm x 197 mm x 417 mm 10.5/11.3/12/12 kg

SPECTRUM ANALYZER R&S FSEx

Condensed data of	R&S	FSEA/R&S	FSEB
-------------------	-----	----------	------

Frequency range	20 Hz/9 kHz to
	3.5 GHz/7 GHz
Amplitude measurement range	-155/-145 dBm to +30 dBm
Amplitude display range	10 dB to 200 dB
	in steps of 10 dB
Amplitude measurement error	<1 dB up to 1 GHz,
	<1.5 dB above 1 GHz
Resolution bandwidth	1 Hz/10 Hz to 10 MHz
	in 1, 2, 3, 5 logarithmic
	scaling
Calibration	amplitude, bandwidth
Display	24 cm (9.5") TFT LC
	colour or monochrome
	display, VGA resolution
Remote control	IEC 625-2/IEEE 488.2
	(SCPI 1997.0) or
	RS-232-C

5.5.3 Mean Power Measurement with TV Test Receiver R&S EFA Model 70 or 73

The R&S EFA displays all important signal parameters in a status line. The upper status field indicates mean power in various switchable units.

Fig. 5.33 Power measurement with TV Test Receiver R&S EFA model 70 or 73

TV Test Receiver R&S EFA Model 70/73

Condensed data of R&S EFA models 70 and 73

Frequency range	45 MHz to 862 MHz, 5 MHz to 1000 MHz with RF Preselection option (R&S EFA-B3)
Input level range	-47 dBm to +14 dBm -84 dBm to +14 dBm (low noise) with RF Preselection option (R&S EFA-B3)
Bandwidth	2/6/8 MHz
Demodulation	64/256 QAM
BER analysis	before and after Reed Solomon
Measurement functions/ graphic display	level, BER, MER, carrier suppression, quadrature error, phase jitter, amplitude imbalance, constellation diagram, FFT spectrum
Output signals	MPEG2 TS: ASI, SPI
Options	MPEG2 decoder, RF preselection

Investigations on channel spectra revealing pronounced frequency response have shown the high accuracy of the displayed level. A comparison of the levels obtained with TV Test Receiver R&S EFA and Power Meter R&S NRVS with a thermal power sensor yielded a maximum difference of less than 1 dB – the comparison being performed with various R&S EFA models at different channel frequencies and on different, nonflat spectra. Thanks to the R&S EFA's built-in SAW filters of 2 MHz, 6 MHz and 8 MHz bandwidth for the IF range, highly accurate results are obtained even if the adjacent channels are occupied.

The following example illustrates a measurement performed in the above comparison:

An echo with 250 ns delay and 2 dB attenuation is generated by means of TV Test Transmitter R&S SFQ with the fading simulator option.

This echo, plus the signal sent via the direct path, produce the channel spectrum shown in Fig. 5.34 with pronounced dips resulting from frequency response.

Fig. 5.34 Fading spectrum

Table 5.7 gives the results where the maximum difference between the R&S NRVS and R&S EFA has occurred.

Level measurement with	R&S NRVS	R&S EFA			
	-33.79 dBm	-33.0 dBm			
Table 5.7 Comparison of results					

Note:

The results of the above level measurements are specified in detail in Application Note 7BM12 (see also Annex 4A to Part 4 (DVB-T) of the "Digital TV Rigs and Recipes"). The measurements described there were made with the R&S EFA models 20 and 23. The successor models 60 and 63 feature even higher level accuracy, yielding a typical maximum difference of less than 1.0 dB.

5.6 Bit Error Ratio (BER)

Digital TV has a clearly defined range in which it operates correctly. Transition to total failure of an ITU-T J.83/B system is abrupt. This is due to concatenated forward error correction with trellis coding and Reed-Solomon FEC.

The (128, 122, 3) RS FEC is capable of correcting transport stream data to yield a nearly error-free data stream (BER < 1×10^{-11} , i.e. one error every 15 minutes), but only for bit error ratios of 7 x 10^{-5} or better (value determined by measurements, not based on theoretical considerations, criterion is BER \rightarrow QEF ater RS with interleaver 128/1). The sources of error determining the bit error ratio are known. A distinction is made between errors originating from the ITU-T J.83/B modulator/transmitter and errors occurring during transmission.

The following errors occur in the modulator/transmitter:

- different amplitudes of the I and Q components,
- phase between I and Q axis deviating from 90°,
- phase jitter generated in the modulator,
- insufficient carrier suppression in ITU-T J.83/B modulation,
- amplitude and phase frequency response, distorting the I and Q pulses being shaped during signal filtering, and
- noise generated in the modulator and superimposed on the QAM signals.

This is aggravated by further amplitude and phase response during transmission caused by:

- nonlinearities of the line amplifiers in the cable networks, causing distortion of the ITU-T J.83/B QAM signal,
- intermodulation with adjacent channels degrading signal quality,
- interference and noise superimposed on the useful signal,
- reflection distorting the frequency characteristic, and
- laser clipping causing bit errors in fiber-optic networks.

Whereas the errors produced outside the modulator can be simulated by means of auxiliary equipment, the distortion introduced by the modulator itself can be generated only with a professional test receiver. Here, the TV Test Transmitter R&S SFQ comes into its own as a stress transmitter.

It allows defined errors to be set for each parameter to the extent of complete failure of the digital TV system.

SF FRESHENCY SF LEVEL KCOULETON L/O CROER Annotation SPECIA HOBLATER TEE-T J.32/20 EXE COULETON FOR SPECIA SPECIA NOB-S (372) TEE-T J.32/20 EXE COULETON 64 SPECIA NOB-S (372) VID PRECEDINE COULETON 64 SPECIA NOB-T (270) VID PRECE EXER COULETON COULETON COULETON SPECIA NOB-T (270) VID PRECE EXER COULETON COULETON COULETON COULETON NOB-T (270) VID PRECE EXER COULETON COULETON COULETON COULETON NOB-T (270) VID PRECE EXER COULETON COULETON COULETON COULETON	OFF
HOBILATION TU-T J.32./10 CONT D08-5 GP2x 4 TOT 64 D08-6 GP2x 4 1/0 64 D08-7 GP2x 4 1/0 846944. D08-1 COPH 4 1/0 98622 CDUR 5 0.067 D10-1 OZH 4 COMBER SERVESSEN 5 0.067 100 FE6 D10-1 OZH 4 COMBER SERVESSEN 5 0.07 100 FE6 D10-1 OZH 4 COMBER SERVESSEN 5 0.07 100 FE6	ML .
DUI-S (PSK → 1/2) 64 DUI-S (PSK → 1/2) 8(6964, DUI-T CUTM → 1/2) 9(8622 E3030 → 0.0066 HT0-T-1/32-0 → Commen ServiceScon → 0.00 x ATB2 (98) → 1/20 (994), HEALANCE → 0.00 x	
U/0 EXTERNAL → MORE → 26 2 FR00H6 → 26 2 FR00H6 → MOD.	

Fig. 5.35 R&S SFQ menu for setting ITU-T J.83/B parameters

But not only the TV Test Transmitter R&S SFQ is indispensable for checking the proper operation of a DTV system. After transmission of the ITU-T J.83/B signal via the cable network, a test receiver is needed to monitor the digital TV Rx signal.

The solution offered by Rohde & Schwarz for ITU-T J.83/B signal monitoring is:

TV Test Receiver R&S EFA model 70 or 73

The most important parameter at the receiver end – apart from the channel center frequency and the level of the received ITU-T J.83/B signal – is the bit error ratio (BER). To measure this parameter, the data before and after forward error correction (RS FEC) has to be compared at bit level.

Fig. 5.36 ITU-T J.83/B measurement menu: BER measurement

Bit comparison supplies accurate results to a BER of about $1*10^{-3}$ before Reed-Solomon, since up to this value the forward error correction employed by the ITU-T J.83/B system is capable of reconstructing an interpretable data stream.

A defined BER can be generated by means of a noise generator with selectable bandwidth and level. Since for the ITU-T J.83/B system no calculated graphs are available to date that describe the theoretical BER as a function of the signal-to-noise (S/N) ratio, empirical values are given below. The standard allows for an error rate of one error per 15 minutes for a quasi-error-free (QEF) data stream.

Conclusions regarding 64QAM

The S/N ratio of the QEF data stream measured after Reed-Solomon FEC is about 22.0 dB, and the BER before RS is about $7*10^{-5}$.

Comparing these values with the calculated (theoretical) values of the DVB-C system, it can be seen that, in ITU-T J.83/B, trellis coding allows for an S/N ratio 2 dB poorer for 64QAM, and that RS FEC can correct about one decade BER less.

Conclusions regarding 256QAM

The S/N ratio of the QEF data stream measured after Reed-Solomon FEC is about 28 dB, and the BER before RS about $7*10^{-5}$.

Comparing these values with the calculated (theoretical) values of the DVB-C system, it can be seen that, in ITU-T J.83/B, trellis coding allows for an S/N ratio 2 dB poorer for 256QAM, and that RS FEC can correct about one decade BER less.

The TV Test Receiver R&S EFA and the TV Test Transmitter R&S SFQ both have integrated noise generators (optional in the case of the R&S SFQ). The curves being very steep in the range BER $\leq 7*10^{-5}$, which is assumed as the reference value for BER-related measurements in ITU-T J.83/B, the noise level can be determined very accurately.

This is done either using the method described in Application Note 7BM03 (see Annex 4C to Part 4 (DVB-T) of the "Digital TV Rigs and Recipes"), or by a direct measurement with the TV Test Receiver R&S EFA.

7BM03 also explains C/N to S/N conversion.

The high measurement and display accuracy offered by TV Test Receiver R&S EFA ensures minimum deviation of measured values from real values also for the S/N ratio. To determine this ratio, the professional instrument makes use of the statistical noise distribution.

Fig. 5.37 Typical symbol distribution in a 16QAM constellation diagram

Each symbol cloud in a constellation diagram carries superimposed noise distributed according to statistical laws. QAM parameters can thus be calculated accurately to at least two decimal places provided that a sufficiently large number of symbols is evaluated per unit of time.

Before measurements are started. а synchronization process takes place in TV Test Receiver R&S EFA: the receiver locks to the RF carrier, detects the symbol rate and synchronizes to it, the adaptive equalizer corrects amplitude and phase response, and the transport stream frame is identified by means of the sync byte. The R&S EFA indicates the progress of synchronization so that the operator knows when synchronization is completed and valid results are output.

For realtime monitoring systems, one measurement per second is sufficient. During this time, TV Test Receiver R&S EFA calculates the parameters required by the ETSI TR 101 290 standard "Measurement Guidelines for DVB Systems", based on about 70 000 symbols. This means that about 1100 symbols per second are available for each symbol cloud of a 64QAM constellation diagram, which is indispensable to satisfy the stringent demands for measuring S/N ratio (SNR) and the other relevant parameters.

5.7 BER Measurement with R&S SFQ and R&S SFQ-B17 or R&S SFL-J and R&S SFL-K17

The TV Test Transmitters R&S SFQ and R&S SFL-J generate internal PRB sequences (PRBS = pseudo random binary sequence) of different lengths. The lengths specified by the standard are 2^{23} -1 and 2^{15} -1. A PRBS is added to the signal, the signal is modulated in accordance with ITU-T J.83/B, and then demodulated by a device under test (DUT), e.g. a set-top box. If no errors occur during transmission and demodulation, the output data is identical to the PRBS signal generated in the test transmitter. The output data can be fed back to the test transmitter and checked for errors by means of the R&S SFQ-B17 or R&S SFL-K17 option.

Fig. 5.38 Test setup for BER measurement

The TV Test Transmitter R&S SFQ or R&S SFL-J modulates the null PRBS packets (null packets whose payload consists of PRBS bytes).

The Reed-Solomon encoder is switched off, otherwise channel coding is performed completely.

Since the six error control bytes are missing, the Reed-Solomon decoder in the DUT detects more than three bytes as errored. The Reed-Solomon decoder consequently sets the transport error indicator (TEI) flag and lets the transport stream pass unchanged. The BER before the Reed-Solomon decoder can thus easily be measured.

STBs output the transport stream as a TTL signal via their common interface. The TTL signal is converted to an LVDS signal by an adapter card. The LVDS signal is applied to the R&S SFQ via the TS PARALLEL AUX input or the R&S SFL-J via the TS PARALLEL or SPI input for bit-error ratio measurement. With the NULL PRBS PACKET setting selected on the test transmitter, the four-byte header of the transport packets is removed in the R&S SFQ-B17 or R&S SFL-K17 option (BER Measurement). The remaining 184 bytes of payload contain the original PRBS of 2²³-1, which is analyzed to determine the bit error ratio.

The above test setup can also be used for serial data BER measurements if an appropriate clock signal is available.

5.8 QAM Parameters

To explain measurement of the QAM parameters, the constellation diagram has to be discussed first. The ITU-T J.83/B constellation diagram is divided in 64 or 256 decision fields of equal size. Each symbol of these fields carries 6 or 8 bits. Noise superimposed during transmission causes the formation of symbol clouds. If these clouds are located within a decision field, the demodulator can reconstruct the original bits.

To ensure maximum accuracy in processing the symbols within the decision fields, the I and Q components are digitized, i.e. A/D-converted, immediately after demodulation.

For QAM parameter measurement, the digitized center points of the I/Q symbol clouds are connected by horizontal and vertical regression lines (see Fig. 5.38). Based on these lines, the following QAM parameters can be calculated: I/Q IMBALANCE, I/Q QUADRATURE ERROR and CARRIER SUPPRESSION. The SNR (signal-to-noise ratio) and PHASE JITTER parameters are calculated from the symbol clouds themselves.

The QAM parameters are described in the following sections.

5.8.1 Decision Fields

In a QAM constellation diagram, the ideal signal status is attained if the symbols (each consisting of a pair of I and Q values) are mapped into the center point of the decision field. This ideal constellation is, however, never reached after demodulation and A/D conversion, because of inaccuracies in the QAM modulator, quantization errors in A/D and D/A conversion, and the superposition of noise during transmission.

Decision thresholds

After A/D conversion, the decision field shows all possible digital states, which are referred to as pixels in this context. The center of the decision field is formed by the point where the corners of the four middle pixels adjoin. The effect of digitization, i.e. the division into discrete pixels, is cancelled out by superimposed noise, which is always present and has Gaussian distribution, and so the measurement accuracy is increased by several powers of ten.

5.8.2 QAM Constellation Diagram

If all QAM parameters have ideal values, an ideal QAM constellation diagram is obtained after demodulation.

Fig. 5.40 Ideal 64QAM and 256QAM constellation diagrams

An ideal QAM signal produces a constellation diagram in which all I/Q value pairs are located exactly in at the center of the decision fields.

The four corner points of the diagram form a square.

For the diagram represented above, the absolute phases of the I and the Q components are not yet known because the phase information is not available due to carrier suppression. It cannot, therefore, be indicated in what direction the I and the Q axes point. Consequently, no coordinate axes are entered in the diagram.

5.8.3 I/Q Imbalance

I/Q imbalance results from different amplification in the I and the Q path of the ITU-T J.83/B modulator. This parameter is calculated by the following equation:

I/Q IMBALANCE = $(v_2 / v_1 - 1) * 100 \%$

with $v_1 = \min(v_1, v_Q)$ and $v_2 = \max(v_1, v_Q)$

Fig. 5.41 64QAM constellation diagram with 10 % I/Q imbalance

A QAM signal with amplitude imbalance generates a constellation diagram with different spacing of the I/Q value pairs in the horizontal and the vertical direction: in the above example, the spacing is greater in the horizontal direction. The I/Q value pairs are not located in the center of the decision fields.

The four corner points of the diagram form a rectangle.

5.8.4 I/Q Quadrature Error

If the I and the Q axis are not perpendicular to each other, an I/Q quadrature error is present. This parameter is calculated by the following equation (see also Fig. 5.38):

A QAM signal with a phase error generates a constellation diagram in which the regression lines connecting the center points of the /IQ symbol clouds do not run parallel to the lines forming the decision thresholds.

The four corner points of the diagram form a rhombus.

5.8.5 Carrier Suppression

DC voltage offset in the I and/or the Q path of the ITU-T J.83/B modulator results in a residual carrier component. This parameter is calculated by the following equation:

 $CS = -10 * Ig (P_{rc} / P_{sig})$

 P_{rc} = power of residual carrier P_{sig} = power of ITU-T J.83/B signal

Fig. 5.43 64QAM constellation diagram with 24 dB carrier suppression

A QAM signal with insufficient carrier suppression generates a constellation diagram in which the I/Q value pairs are horizontally or vertically displaced (horizontally and to the right in the above example).

The four corner points of the diagram form a square whose center point is shifted relative to the center point of the diagram.

5.8.6 Phase Jitter

In the presence of phase jitter, i.e. with unstable carrier phase, the constellation diagram does not stand still. It rotates back and forth about its center, depending on the jitter amplitude and spectrum.

This parameter is calculated by the following equation:

$$PJ = \frac{180^{\circ}}{p} \cdot \arcsin\left(\frac{s_{PJ}}{\sqrt{2} \cdot (\sqrt{M} - 1) \cdot d}\right)$$
$$s_{PJ} = \sqrt{s_{PJ+N}^2 - s_N^2}$$

where $M = 2^m$

cloud, with noise component excluded

For the calculation, the symbol clouds in the four corners of the diagram are used because it is there where the maximum variation due to jitter occurs.

٩.	-		٠					F	DD. NOI
•	۰	۲	-	۰	۲	۶			
\$	۰	۰	۰	٠	۰			Ĥ	ISTOGRA
\$	۲	۹	•	٠	۲	ŧ.			ONST DI ISTOGRA
1	۰		*	٠	۴	1	1		FREEZE
Ø	1	۲	*	٠	٠	\$	1		HOLD
\$	۲	۲	۲	*	٠	٩.	۴		INFINI
ð	-	۰		*	٠	۲	×,		YMBOL C
		2457	760 S	YMBO	LS P	ROCES	SED	CI	JRR LEVE

Fig. 5.44 64QAM constellation diagram with 2 ° phase jitter (rms)

A phase jitter of 2 $^{\circ}$ (rms) means a peak-to-peak jitter of 5.7 $^{\circ}$ in the case of sinusoidal jitter.

A QAM signal with superimposed phase jitter generates a constellation diagram in which the I/Q value pairs appear as circular segments. The segments in the inner part of the diagram are shorter than those in the outer part; the jitter angle is constant. The center points of the four corner segments form a square.

5.8.7 Phase and Amplitude Jitter Spectra

In addition to measuring phase jitter in the time domain, it is now also possible to measure the phase jitter and amplitude jitter spectra using TV Test Receiver R&S EFA model 70 or 73 with firmware version 5.10 or higher. The frequency range is from 1 kHz to 1 MHz.

The jitter spectrum is obtained by comparing the actual positions of a sequence of Rx I/Q data with the ideal positions (in the center of the decision fields). Depending on the measurement selected, the amplitude or phase jitter component is analyzed from the difference between the ideal position and the actual position of the symbols received:

- PHASE JITTER: In this measurement, the ratio of the amplitude of the received I/Q value to the amplitude of the ideal position is assumed to be 1 in each case (the symbols of the decision fields are located on circular segments about the center point of the constellation diagram). The phase jitter is determined by the sequence of phase errors φ(t). This measurement can be used to monitor the phase stability quality of the oscillators used to generate the QAM signal.
- AMPL JITTER: In this measurement, the error in the tangential direction φ(t) is assumed to be zero (the symbols of the decision fields are located on beams originating from the center point of the constellation diagram). The amplitude jitter is determined by the ratio of the amplitude of the received I/Q value to the amplitude of the ideal position in each case. The chronological sequence of amplitude ratios A(t) is processed further. This measurement is useful for checking amplifier control loops in the transmission path.

J.83/B	N SCHOOL SECTION SECTI	00H: PH/A	JITTER L: -31.4dPn
-70 -70			V OFF VERNCE DHT
-00			ERECT
-35			an Dis s
-110	HI TWAND		PPLICATION
EQU	-10 -100 -107.0dBo-Hz @ 20k DN CF LOI	KHZ 1000 / Hz IP+ L04	NDISE

Fig. 5.45 Typical phase jitter spectrum

Depending on whether a noise-like spectrum or a spectrum with discrete interferences is expected, the measurement is performed in the NOISE or CW (continuous wave) mode that can be selected with the APPLICATION softkey.

In the NOISE mode, the frequency characteristic of the phase or amplitude jitter is displayed in dBc/Hz referenced to a bandwidth of 1 Hz. In the CW mode, the result is displayed in dBc, and the reference bandwidth is equal to the resolution bandwidth (RBW, indicated in the upper left of the diagram).

In the example of Fig. 5.46, the RBW is 4.77 kHz.

Fig. 5.46 Amplitude jitter spectrum with discrete interferer at about 50 kHz

The TV Test Receivers R&S EFA measure the phase jitter and amplitude jitter spectra in accordance with the ITU-T J.83/A, B and C standards and the DVB-C and ATSC 8VSB standards, thus making it possible to analyze and monitor the quality of the various mixer oscillators and amplifier loops of a transmitter. Jitter analysis can easily be performed during normal operation without switching off the carrier modulation.

Note:

While the phase jitter or amplitude jitter spectrum is being displayed, MER and EVM (ALARM, HISTORY, IEC 625/IEEE 488 bus) cannot be calculated in the background for technical reasons.

5.8.8 Signal-To-Noise Ratio (SNR)

Noise is generated during any kind of signal processing or signal transmission and superimposed on the original signal. Noise is one of the key parameters in determining the quality of a signal or transmission path. The SNR is calculated from the distribution of the I/Q value pairs (symbols) within the decision fields. To minimize potential distortion of the SNR value by the influence of phase jitter, only the four innermost decision fields of the constellation diagram are used in the calculation.

In the case of the signal shown in Fig. 5.44, there is only minimal distortion of the SNR by phase jitter and other influences. If white noise is superimposed, which is normally the case in signal transmission, the I/Q value pairs have Gaussian (or normal) distribution.

Fig. 5.47 Gaussian distribution of the I/Q value pairs

For an ITU-T J.83/B signal with 30 dB SNR, the following constellation diagram is obtained, with 100 000 symbols evaluated:

J.	83/	вМ	EAS	URE	: COI	ISTE	ELL	DIAGRAM
		1000	00 S	YMBO	LS P	ROCES	SSED	CURR LEVEL:
۲	۲	۲	۲	۲	۲	۲	۲	SYMBOL CNT
۲	۲	۲	۲	۲	۲	۲	۰	100000
۲	۲		۲	۲	۲	۲	۲	HOLD
۲	۲	۲	۲		۲	۲	۲	FREEZE
۲	۲	۲	۲	۰	۲	۲	۲	CONST DIAG
۲	ě	۲				۲	۲	HISTOGRAM (
۲	۲	۲	۲	۲	۲	۲	۲	
۲	۲	۲	۲		۲	۲	۲	ADD. NOISE

Fig. 5.48 64QAM constellation diagram for a signal with 30 dB SNR

A QAM signal with superimposed noise generates a constellation diagram in which the I/Q value pairs appear as symbol clouds. The center points of the four corner clouds form a square.

5.9 Modulation Error Ratio (MER), Error Vector Magnitude (EVM)

The parameter MER, or EVM, respectively, encompasses all the parameters that can be determined by means of the constellation diagram. The MER and EVM are, therefore, the most important parameters to be monitored in a DTV system besides the BER. If the MER and the EVM are within agreed tolerances, all other parameters are likewise within tolerances.

To determine the MER/EVM, an error vector is calculated for each I/Q value pair. The length of this vector indicates the offset of the actual position of an I/Q value pair from the ideal position, i.e. the center of the decision field.

To determine the MER, the sum of the squares of all error vectors calculated during one second is formed. The same is done with the ideal vectors of the decision fields. Then the ratio of the two sums is formed. This value is logarithmized, which yields the MER value in dB. The logarithmic ratio can also be expressed in percent.

To determine the EVM, the sum of the squares of all error vectors calculated during one second is formed. Then the ratio of this sum and the square of the longest ideal I/Q vector is determined. This ratio is converted to yield the EVM value in percent.

MER/EVM ratio conversion is performed as follows:

$$EVM_V = \frac{1}{MER_V * V}$$

where V is dependent on the QAM format, see table below.

QAM format	V
	(= ratio of peak voltage
	to rms voltage)
16	1.3416
64	1.5275

5.10 Bit Error Ratio (BER) Measurement

ITU-T J.83/B system margins can easily be determined by means of TV Test Transmitter R&S SFQ. System margins will be indicated for each individual quality parameter by deteriorating the parameters to a BER of $7*10^{-5}$ before RS FEC, which is the critical limit for system failure (this value is based on measurements, not derived by way of calculation, criterion is BER \rightarrow QEF after RS with interleaver 128/1). The TV Test Transmitter R&S SFQ helps to find ITU-T J.83/B system margins in the laboratory, test shop, in production, quality management and during operation.

TV Test Transmitter R&S SFQ for ITU-T J.83/B cable standard and for DVB-C, DVB-S, DVB-T and ATSC 8VSB standards

If each ITU-T J.83/B signal parameter is deteriorated to the point the 64QAM transmission system may fail (BER > $7*10^{-5}$ before RS FEC), the following limit values will be found:

Parameter	Value
I/Q imbalance	< 18.5 %
I/Q phase error	< 9.5 °
Carrier suppression	< 13.0 %
SNR	< 22 dB

Table 5.8 Limit values for 64QAM ITU-T J.83/B

Here, too, the effect of trellis coding makes itself felt, allowing considerably poorer values for the individual signal parameters compared with DVB-C. For a BER better than 7*10⁻⁵ before RS FEC, the QAM Test Receiver R&S EFA measures the quality parameters listed in Table 5.8 because, up to this point, concatenated forward error correction supplies an interpretable TS data stream. Experience has shown that good 64QAM modulators and converters, as used in ITU-T J.83/B networks, should not exceed an MER of 0.9 % to 1.3 % rms. Plus, an MER significantly better, i.e. below 1.5 % rms is not to be expected in public cable networks. The measurement menu below illustrates why this is SO.

J.83/B	MEASURE	E:QAM PARAME	TERS
SET RF 477.25 MHz	CHANNEL	ATTEN : 35 dB -7.4 dBm	
MODULATION:			CONSTELL DIAGRAM
I∕Q AMPL IMBA I∕Q QUADRATUR CARRIER SUPPR	LANCE E ERROR ESSION	0.07 % 0.04 ° 50.4 dB	FREQUENCY DOMAIN
TRANSMISSIO PHASE JITTER SIGNAL/NOISE	N: (RMS) RATIO	0.20 ° 46.2 dB	TIME DOMAIN
SUMMARY:			
MER (RMS) MER (MIN)		42.6 dB 27.8 dB	
EVM (RMS) EVM (MAX)		0.49 % 2.67 %	ADD. NOISE OFF

The very positive S/N ratio of 46.2 dB alone means an MER of 0.49 % rms, assuming that no other QAM parameter affects the MER. This means that, in order to reach an MER of 42.6 dB rms (corresponding to 0.74 % rms), the remaining QAM parameters together must not deteriorate the MER by more than 0.25 %. For a QAM test receiver this means:

The parameters are to be measured reliably and with very high accuracy. This is indispensable to determine the influence of the single parameters for a sum error as small as that.

The measurement method by which such a high accuracy is achieved is described in section *5.8* "QAM Parameters". The method relies, first, on a high number of symbols being processed per second and decision field and, second, on the phenomenon of noise (which is always present) and its statistical distribution, which allows the center points of the symbol clouds to be exactly determined.

5.11 Equivalent Noise Degradation (END) Measurement

The equivalent noise degradation (END) denotes the deviation of the actual SNR from the empirically determined SNR for a BER of $7*10^{-5}$ (SNR = 22 dB for 64QAM, criterion is BER \rightarrow QEF after RS with interleaver 128/1).

To prevent influences from the test equipment invalidating results, two measurements are required to determine the END.

For the first measurement, the RF signal of an ITU-T J.83/B modulator is applied to the RF input of TV Test Receiver R&S EFA model 70 or 73. The R&S EFA superimposes white noise on the signal by means of its internal noise generator and measures the BER.

This measurement can also be performed using the test setup described under 5.7 "BER Measurement with R&S SFQ and R&S SFQ-B17 or R&S SFL-J and R&S SFL-K17", the noise being superimposed in this case by the noise generator option of the respective test transmitter, i.e. R&S SFQ-B5 or R&S SFL-N. Example:

The BER of $7*10^{-5}$ is reached at C/N₁ = 22.7 dB (displayed in the ADD. NOISE field of TV Test Receiver R&S EFA). The empirically determined SNR for the BER of $7*10^{-5}$ is 22 dB. The SNR is converted to C/N as follows:

C/N = SNR + 0.2 = 22.2 dB

Note:

The following relationship exists for the S/N and the C/N ratio for 64QAM ITU-T J.83/B with a roll-off factor of r = 18 % (a = 0.18): C/N =S/N - $k_{roll-off} = S/N$ - (- 0.2) dB $k_{roll-off} = 10 \times \log(1 - a/4)$

With R&S EFA models 70 and 73, the C/N ratio is referenced to the selected symbol bandwidth (= symbol rate, e.g. 5.057 MHz), i.e. the measurement is independent of the channel bandwidth.

The difference (22.7 dB - 22.2 dB) of roughly 0.5 dB is the END of the measurement system itself, in this case of TV Test Transmitter R&S SFQ and TV Test Receiver R&S EFA. Assuming that this value is equally distributed among the two instruments, each unit has an END of only 0.25 dB, which is a very good figure.

For the second measurement, the RF signal of the ITU-T J.83/B modulator is applied to the RF input of the device under test (DUT). As in the first measurement, the R&S EFA superimposes white noise on the RF output signal and measures the BER. The BER of $7*10^{-5}$ is now attained at C/N₂ = 23.1 dB (displayed in the ADD. NOISE field).

	J.83/B	MEASURE				
SET RF 479.00 MHz	CHANNEL 15	ATTEN : LOW+P -20.2 dBm				
SET RF CALC RF FREQUENCY OFF	47 47 SET	9.0000000 MHz 8.9993229 MHz -677.2 Hz	CONSTELL DIAGRAM			
SET SYMBOL RA SYMBOL RATE O	FFSET	5.0569410 MS/s -14.9 Hz	FREQUENCY DOMAIN			
MODULATION MER (RMS) EVM (RMS)		64QAM 21.8 dB 5.29 %	TIME DOMAIN			
BER BEFORE RS BER AFTER RS SEG ERR RATIO	7.0E-5 0.0E-8 0.0E-6	5 (10/10) 3 (940/1000) 3 (940/1000)	QAM PARA- METERS			
SEG ERR ∕s	00000		RESET BER			
TS BIT R	TS BIT RATE 26.970 Mbit∕s SAW∶OFF					

Fig. 5.51 ADD. NOISE on R&S EFA

The END of the device under test is calculated as follows:

 $END = C/N_2 - C/N_1 = 23.1 \text{ dB} - 22.7 \text{ dB} = 0.4 \text{ dB}$

As this measurement is a differential measurement, the measurement accuracy solely depends on the accuracy of the R&S EFA's builtin attenuator, which is in any case adequate for this purpose.

5.12 ITU-T J.83/B Spectrum

5.12.1 Amplitude and Phase Spectrum

During transmission of the ITU-T J.83/B signal, its spectrum is distorted in amplitude and phase as a function of frequency. TV Test Receiver R&S EFA corrects this by means of a complex channel correction filter. As a result, a spectrum with optimal, flat amplitude and phase frequency response is available for further processing.

An inverse fast Fourier transform (IFFT) covering the coefficients of the channel correction filter yields the inverse channel transfer function, which is then converted to the amplitude and phase frequency response.

The spectrum thus calculated is displayed. From the phase frequency response, the group-delay frequency response can be determined by way of differentiation. The amplitude and phase frequency response information can be used to generate a polar plot.

J.	83/B	1EASUR	RE: FRE	QUENC	Y D	DMAIN
1.5 dB					_	CURR LEVEL: -5.8 dBm
0.5	~			~~~	\sim	SPECTRUM
-0.5 -1		/			_	AMPLZPHASE AMPLZGD POLAR PLOT
-1.5 <u></u> -	2 -	1 (і D МІ	lz 2		
DEG						
0 -5			·	·····	-	DETECTOR RMS PEAK
-10	PP :	1.0dB	5	EDEG	_	ADD. NOISE OFF

Fig. 5.52 Amplitude and phase frequency response of an ITU-T J.83/B signal

Fig. 5.53 Polar plot of an ITU-T J.83/B signal

Test Receiver R&S EFA model 70/73 in this way also monitors the effects of the transmission medium on an ITU-T J.83/B signal.

5.12.2 Spectrum and Shoulder Distance

Calculating channel frequency response by means of a fast Fourier transform (FFT) yields a much wider dynamic range for level measurements than is obtained by means of evaluation based on the coefficients of a complex channel correction filter as described above. While the FFT method does not offer the high measurement accuracy of a spectrum analyzer, it is sufficiently accurate for evaluating the Tx spectrum of a channel and to determine the out-of-band components.

J.83/B MEASURE:FREQ DOMAIN:S	PECTRUM
-10 RBW: 11.80 kHz AVG: 50/50	CURR LEVEL: -7.4 dBm
	AVERAGE CNT 50
-30	PEAK HOLD
-50	DETECTOR MIN RMS
-60	START FREQ -4.00 MHz
-70 · · · · · · · · · · · · · · · · · · ·	STOP FREQ 4.00 MHz
-4 -2 0 MHz 4 SHOULDER ATT (SAW 8MHz, ETR290): LOWER: 46.8dB UPPER: 47.5dB	ADD. NOISE OFF

Maximum level resolution is obtained if only the useful range of the spectrum is analyzed (in this example from -2.5 MHz to +2.5 MHz for a symbol rate of 5.056940625 Msymb/s). Level resolution is automatically selected, as a function of the frequency response, to a minimum value of 2 dB/div.

To determine the shoulder distance in compliance with TR 101 290, the 8 MHz SAW filter is to be switched on and the frequency range from -4.0 MHz to +4.0 MHz to be selected.

5.13 Echoes in Cable Channel

Any echoes caused by mismatch in the cable channel can likewise be calculated by means of the coefficients of the channel correction filter. For example, there may be mismatch in the cable system distributing the ITU-T J.83/B signal to the apartments of a building. Any junction boxes that were manipulated can in this way be accurately identified and located. Points of mismatch are located by means of the echo delay information in μ s, or the distance in electrical length in km or miles.

Fig. 5.55 Echo diagram

In the example shown in Fig. 5.55, the main pulse is at $0 \mu s$, and the echo follows with an attenuation of 21.6 dB and a lag of $0.39 \mu s$.

From the echo delay, the distance from the point of discontinuity causing the reflection is calculated. In the above example, the result is 117 m. After switchover to the MILES scale (1 mile = 1.61 km), the R&S EFA displays the distance with 0.07 miles resolution.

This measurement accuracy is sufficient to locate impedance discontinuity in large cable systems in buildings as described above.

5.14 Crest Factor of ITU-T J.83/B Signal

ITU-T J.83/B signals have a structure similar to that of white noise. An important parameter for describing ITU-T J.83/B signals is, therefore, the crest factor, which is defined as the quotient of the peak voltage value and the root-mean-square (rms) voltage value. In the example below, a maximum crest factor of 11.0 dB for 64QAM was measured with TV Test Receiver R&S EFA. The crest factor is displayed here using the complementary cumulative distribution function (CCDF). It can be seen that the amplitude distribution follows exactly the theoretical function (horizontal lines plotted at intervals of 1 dB, indicating the theoretical reference values). From this it can be deduced that there are no limiting effects in the ITU-T J.83/B system under test.

Fig. 5.56 Crest factor of an ITU-T J.83/B signal

Any limitations of the ITU-T J.83/B signal would mean that information is missing, with the consequence of increasing BER. Correct level adjustment of the ITU-T J.83/B system, therefore, helps to avoid an unnecessary reduction of the system's safety margin.

5.15 History

The HISTORY function of TV Test Receiver R&S EFA allows long-term monitoring of an ITU-T J.83/B system for compliance with specified levels, BER before and after RS FEC, non-correctable errors and loss of data without requiring an external PC.

The RF level is continuously monitored. The lower screen can be switched between measuring BER before or after RS FEC and measuring MER (or EVM) in the time domain. In addition, the RF level, the BER before and after RS FEC, and the MER (or EVM) can be output in the form of a list with the average, maximum and minimum values obtained during a given measurement interval.

Fig. 5.57 HISTORY display with RF level and BER before RS FEC as a function of time

5.16 Alarm Report

Measurement reports are not only available on site at the cable headend, but can also be queried from a remote control center. System monitoring is very easy using TV Test Receiver R&S EFA model 70/73.

The network operator first chooses the parameters to be monitored. Fig. 5.58 shows a configuration in which all parameters are included in monitoring.

J.	J.83/B ALARM:CONFIG					
SET RF 477.25 MHz	SET RF CHANNEL ATTEN : 35 dB 477.25 MHz -8.0 dBm					
DISABLED 🖪	DISABLED ENABLED					
DISABLED ENABLED MPEG TS SYNC						
DISABLED 🖪	IABLED	MER dB				
DISABLED 🖪	DISABLED ENABLED					
DISABLED 🖪	IABLED		BER BEFORE RS			
DISABLED 🖪	IABLED		MPEG DATA ERROR			

Fig. 5.58 Alarm configuration menu: all possible parameters are monitored

Table 5.10 lists the parameters (with their short forms) that can be selected in the ALARM:CONFIG menu:

Parameter	Explanation			
LEVEL	Input level below threshold	LV		
MPEG TS SYNC	Synchronization of ITU-T J.83/B	SY		
	symbols and MPEG2 transport			
	stream packets			
MER dB	MER below threshold			
EVM/MER %	EVM (alternatively MER) above			
	hreshold			
BER BEFORE RS	BER below threshold E			
MPEG DATA	Data errors that cannot be corrected			
ERROR	by Reed-Solomon forward error			
	correction			

Table 5.10

After selecting the ALARM parameters, the alarm thresholds have to be set. Thresholds can be set for LV, ME, EV and BR (see Table 5.10). Since non-correctable data and synchronization failure are absolute events, they are not assigned a threshold.

J.83/B ALARM: THRESHOLD					
SET RF 477.25 MHz	CHANNEL	ATTEN : 35 dB 8.0 dBm			
LEVEL	= -60	.O dBm	LEVEL		
MER (RMS)	= 30.	00 dB	MER dB		
EVM/MER (RM	S) = 2.	00 %	EVM/MER %		
BER BEFORE	RS = 2.0	E-05	BER BEFORE RS		

Fig. 5.59 Setting alarm thresholds

The MER alarm threshold can be selected in dB and, same as the error vector magnitude (EVM), also in %. There exist, therefore, two alarm parameters for the MER which may be regarded as an inner and an outer tolerance. The EVM, by contrast, can be expressed in % only and is therefore assigned only one alarm message.

Activated alarms are brought out as single alarms and as a sum alarm at connector X34 (USER PORT) on the rear of the R&S EFA. In addition, alarms can also be triggered via relays. In the event of a sum alarm, the single alarms are queried via the remote control interface.

Fig. 5.60 Connector X34 USER PORT

X34 pin No.	Alarm designation
1	Sum alarm
2	Level alarm
3	Sync alarm
4	MER alarm
5	EVM alarm
6	BER alarm
7	Data error
40 to 48	Ground
49.50	+5 V (200 mA)

Table 5.11 Pin assignment of connector X34 in ITU-T J.83/B mode

Professional monitoring calls for error reports. The R&S EFA not only records the key parameters LV (RF input level below threshold) and SY (loss of synchronization), but also the MER (ME, and additionally the EVM (error vector magnitude, EV)), the BER (BR), as well as noncorrectable data errors (DE), the latter indicating the safety margin of an ITU-T J.83/B system. All errors are recorded with date and time.

On pressing the ALARM hardkey on the R&S EFA front panel, the alarm list is displayed. The list may comprise up to 1000 lines in which each event is entered with its number, date and time and the parameter triggering the alarm.

The time indicated is when a parameter first went out of tolerance or returned to tolerance.

	J.83/B ALARM									
47	SET RF 73.00 MI	Hz (CHANNI 14	EL	AT.	TEN 70 .	: 6	10 d B	dB uY	
NO	DATE 24.03.03	TI 14 · C	(ME)1:41	L٧	SY	ALA ME	ARM EV	BR	DE	REGISTER CLEAR
15 16	24.03.03 24.03.03	13:5 13:5	51:49 51:51	 	SY 	ME ME	EV EV	BR **	DE 	THRESHOLD
17 18	24.03.03	13:5 13:5	51:52 51:54		SY 	ME	EV	BR **	DE 	CONFIG
20	24.03.03 24.03.03 24.03.03	13:5 13:5 13:5	51:55 51:56 51:59		SY	ME	EV EV EV	BR	DE	LINE Newesin Man
22 23	24.03.03 24.03.03	13:5 13:5	52:01 52:03		SY 	ME ME	EV EV	BR **	DE 	PRINT
24 25	24.03.03 24.03.03	13:5 13:5	52:04 52:12			МЕ 	EV 			STATISTICS

Fig. 5.61 Alarm list

The double asterisk (**) means that the parameter is cleared from the monitoring list. The time and date of clearance are indicated the first time the sign is displayed for a given parameter.

If more than 1000 events occur during a monitoring period, the initial events are cleared and the current events added at the end of the list.

It may sometimes be necessary, for statistical purposes, to know the duration of the individual errors and the percentage they take up in overall monitoring time. This information is given under STATISTICS.

J.83	ISTIC	S			
SET RF 477.25 MHz	CHANNEL	ATTEN : -7.8	35 dB dBm		
MONITORING TIM	E	000001:	05:00		
LEVEL	LV =	000000 -	02:59	4.5897	z
MPEG TS SYNC	SY =	= 000000 =	05:13	8.0256	2
MER dB	ME =	= 000000 =	53:30	82.3077	2
EVM/MER %	EV =	= 000000 =	53:34	82.4103	2
BER BEFORE RS	BR =	= 000000 =	13:30	20.7692	2
MPEG DATA ERRO	IR DE =	= 000000 =	05:41	8.7436	2
CORR CNT BEFOR	E RS		N =	1221576	
MPEG DATA ERRO	IR CNT AFT	TER RS	N =	19069	
				REFRESI	4

Fig. 5.62 Statistical evaluation of error periods

If errors occur more and more frequently in the alarm report, this indicates instability, and possibly even imminent failure, of the ITU-T J.83/B system.

Operators of digital cable networks know:

If the picture on a TV receiver shows visible degradation, transmission reliability in a DTV system has fallen far below acceptable limits. As in any digital system, the transition from reliable operation to total failure is a very abrupt one because of forward error correction. TV Test Receiver R&S EFA, therefore, warns the operator early and reliably of an imminent failure of the ITU-T J.83/B system.

5.17 Options for TV Test Receiver (QAM Demodulator) R&S EFA Model 70/73

5.17.1 RF Preselection Option R&S EFA-B3 (for R&S EFA Model 73)

The ITU-T J.83/B cable system does not provide for guard channels. All available channels come one after the other without any guard interval in between. To measure and monitor individual channels of a cable system, the channel of interest has to be selected.

The RF Preselection option R&S EFA-B3 allows channel selection between 5 MHz and 1000 MHz and, in addition, enhances input sensitivity of the R&S EFA front end. The lower frequency limit of 5 MHz makes TV Test Receiver R&S EFA model 73, equipped with R&S EFA-B3, capable of upstream-channel communication.

The minimum input level is lowered to -67 dBm to -70 dBm in the VHF and the UHF range as a function of the RF attenuator setting (Low Noise, Low Distortion, High Adjacent Channel Power).

The RF Preselection option turns the R&S EFA model 73 into a selective test receiver of very high quality capable of demodulation despite low input levels.

5.17.2 Measurements with MPEG2 Decoder Option R&S EFA-B4

The MPEG2 Decoder option R&S EFA-B4 covers part of the functionality of MPEG2 Measurement Decoder R&S DVMD and MPEG2 Realtime Monitor R&S DVRM. The R&S EFA measurement functions are optimized for monitoring the demodulated transport stream at the cable headend.

ITU-T J.83/B uses the same MPEG2 protocol as DVB-C. All MPEG2 measurements are, therefore, identical to those described in Part 2 (DVB-C) of the "Digital TV Rigs and Recipes".

If TV Test Receiver R&S EFA model 70/73 is fitted with option R&S EFA-B4, it alone will suffice to analyze the MPEG2 protocol and the RF characteristics during ITU-T J.83/B transmission.

First, the time limits for the repetition intervals of the tables and time stamps in the transport stream have to be set. The limits can be userdefined or selected in conformance with the standards

TR 101 290 for DVB

for the parameters defined there.

Parameter	To l	DVB	To MF	۶EG	
name	MIN	MAX	MIN	MAX	
PAT distance	25 ms	0.5 s	25 ms	0.5 s	
CAT distance	25 ms	0.5 s	25 ms	0.5 s	
PMT distance	25 ms	0.5 s	25 ms	0.5 s	
NIT distance	25 ms	10 s			
SDT distance	25 ms	2 s			
BAT distance	25 ms	10 s			
EIT distance	25 ms	2 s			
RST distance	25 ms				
TDT distance	25 ms	30 s			
TOT distance	25 ms	30 s			
PCR distance	0 ms	0.04 s	0 ms	0.1 s	
PCR discontinuity		0.1 s			
PTS distance		0.7 s			
PID distance		0.5 s			
PID unref. duration		0.5 s			

Table 5.12 Limit values for parameters to DVB and MPEG2

In DVB all parameters are predefined, in MPEG2 only a few. Parameters not defined by the standard must be defined by the user. The largest discrepancy between DVB and MPEG2 is in PCR distance with 40 ms for DVB and 100 ms for MPEG2.

Fig. 5.63 shows the menu for setting the limit values on TV Test Receiver R&S EFA fitted with MPEG2 Decoder option R&S EFA-B4. The DEFAULT softkey activates the predefined MPEG2 or DVB values. It is recommended to select the DVB limit values to ensure reproducible and comparable results throughout.

MPEG2 S	TATUS:S	ET LIMITS	5
SET RF (8MHz) 330.00 MHz	ATTI -5	EN : 0 dB 6.5 dBm	BER BEF RS 6.7E-5
PARAMETER	MIN	мах	MIN
PAT DISTANCE	2 <u>5</u> ms	0.5 s	
CAT DISTANCE	25 ms	0.5 s	MAX
PMT DISTANCE	25 ms	0.5 s	
NIT DISTANCE	25 ms	10.0 s	
SDT DISTANCE	25 ms	2.0 s	Ť
BAT DISTANCE	25 ms	10.0 s	
EIT DISTANCE	25 ms	2.0 s	÷
RST DISTANCE	25 ms		
TDT DISTANCE	25 ms	30.0 s	
TOT DISTANCE	25 ms	30.0 s 📕	
PCR DISTANCE	0 ms	0.04 s	
PCR DISCONTINUITY		0.10 s	DEFAULT

Fig. 5.63 Repetition intervals for tables and time stamps

After defining the time limits, the parameters to be monitored for the MPEG2 alarm report have to be enabled. All parameters of the three priorities defined by TR 101 290 can be enabled.

MPEG2 ALARM:CONFIG 1					
SET RF (8MHz) 330.00 MHz		ATTEN : - 56.5	0 dB d Bm	BER BEF RS 6.6E-5	
(ENABLED)	DISABLED			TS SYNC	
	DISABLED SYNC BYTE				
	DISABLED	DISABLED			
ENABLED	DISABLED		CONT COUNT		
ENABLED DISABLED				РМТ	
				MORE 2/4	

Fig. 5.64 First page of MPEG2 alarm menu

On pressing the ALARM key, the MPEG2 ALARM menu comes up. In this menu, all results exceeding tolerances during the monitoring period are displayed. Disabled parameters are marked by "--" in brackets.

MP		
SET RF (8MHz) 330.00 MHz	ATTEN : 0 dB -56.5 dBm	BER BEF RS 3.3E-6
FIRST PRIORITY [00] TS SYNC	ERROR [00] SYNC BYTE	
[00] PAT [00] PMT	[00] CONT COUNT [00] PID	
SECOND PRIORITY [00] TRANSPORT [00] PCR [00] PTS	<pre>/ ERROR [00] CRC [00] PCR ACCURACY [00] CAT</pre>	ALARM CONFIG
THIRD PRIORITY [00] NIT [00] UNREF PID [00] EIT [00] TDT	ERROR [00] SI REPEAT [00] SDT [00] RST	

Fig. 5.65 MPEG2 ALARM menu

In the MEASURE menu, the parameters are evaluated in line with TR 101 290 irrespective of the settings made in the ALARM menu. An error counter can be started, stopped and cleared in this menu.

MPEG2 MEASURE				
SET RF (8MHz) 330.00 MHz		ATTEN : -56.4	0 dB dBm	BER BEF RS 7.9E-5
FIRST PRIORIT	Y ERI	ROR J SYNC BY	TE	VIEW PROGRAM
[00] PAT [00] PMT	E01 E00] CONT CO] PID	UNT	
SECOND PRIORI [01] TRANSPORT [00] PCR [00] PTS	TY EI: 000 001 001	RROR J CRC J PCR ACC J CAT	URACY	
	Y ERI	ROR	от	START COUNTER
[00] UNREF PID [00] EIT [00] TDT	001 001	J SDT J RST		STOP COUNTER
ELAPSED TIME	: 00	:00:00:	10	CLEAR COUNTER

Same as in the ITU-T J.83/B mode, the alarms in the MPEG2 mode are brought out at connector X34 of TV Test Receiver R&S EFA. Table 5.13 shows the pin assignment for the MPEG2 mode.

Name	Output (pin No.)		
Sum alarm	1		
First priority alarm (sum)	2		
Second priority alarm (sum)	3		
Third priority alarm (sum)	4		
Ground	40 to 48		
+5 V (200 mA)	49, 50		

Table 5.13 Pin assignment of connector X34 in MPEG2 mode

In the MPEG2 mode, too, alarms can additionally be triggered via relays.

The VIEW PROGRAM COMP... softkey opens the PAT (Program Association Table) of the received transport stream listing the programs transmitted. The data rates of the overall transport stream, the individual programs, the tables and the null packets of the transport stream are displayed as well.

MPEG2 MEASURE:VIEW PROGRAM							
SET RF 330.0	(8MHz) DO MHz		ATTEN -	∶0 dB ∕dBm	BER BEF RS 5.9E-5		
NO	NAME	ELE	CA	Mbs	VIEW		
1	- Bounce	VA		0.685	PRUG COMP		
2	H-Sweep 1	VAa		3.152	ACTIVATE		
3	Ramp Y C	VA		1.837	PROGRAM		
4	Nonlineari	t VA		1.873			
5	RGB Sweep	VA		3.003	UP		
6	CCIR17	VA		1.164			
	SI TABLES			0.159	DOUN		
	NULL PACKE	T	TO: 0	5.270	00011		
ы	PROGRAMS FOO	NU	15: 2	7.145			

Fig. 5.67 PAT of a transport stream with key parameters

ACTIVATE PROGRAM opens the PMT (Program Map Table) of the selected program with information on the number of video, audio, data and "Other" data streams including associated PID (Packet IDentifier) numbers. The PID numbers of the PMT and the PCR (Program Clock Reference) are listed too.

MPEO	32 MEA	SURE: \	/IEW PRO	JGRAM	COMP
SET RF (330.00	(8MHz) MHz		ATTEN : - 56.9	0 dB dBm	BER BEF RS 3.5E-5
NO 1 2 1	NAME H-Sweep	ELI 1 VAa	E CA	Mibs .149	VIEW PROGRAM
PID 0129 8	TYPE PMT	CODE	CA PID	Mbs	ACTIVATE PROG COMP
0200 # 1 0200 # 1 0201 # 1	AUDIO	002 004	2	355 . 397	UP
0202 (AUDIO	004	0	. 397	DOWN

Fig. 5.68 PMT of a program with key parameters

TV Test Receiver R&S EFA model 70/73 with MPEG2 Decoder option R&S EFA-B4 offers functionality optimized for MPEG2 monitoring at the output of a cable headend. The outputs for analog CCVS video and analog audio allow aural and visual monitoring of the programs fed into the cable network.

5.17.3 SAW Filters 2 MHz R&S EFA-B14, 6 MHz R&S EFA-B11 8 MHz R&S EFA-B13

The ITU-T J.83/B standard does not define the channel bandwidth, so the complete VHF and UHF range is available for transmission.

The preferred channel bandwidths are 2 MHz, 6 MHz and 8 MHz, i.e. those defined for the analog standards. For upstream-channel communication in interactive television, 2 MHz is commonly used. To ensure that each operator has the bandwidth configuration matching their application, the SAW filters for TV Test Receiver R&S EFA are available as options. The desired filter should, therefore, always be specified when placing an order.

One SAW filter should always be fitted. Two more SAW filters can be installed optionally.

2 MHz SAW Filter R&S EFA-B14

Expands the R&S EFA functionality to include an ITU-T J.83/B upstream channel. The option supports a 2 MHz channel bandwidth. Various symbol rates are possible.

2MHz SAW Filter R&S EFA-B11 6 MHz SAW Filter R&S EFA-B12 8 MHz SAW Filter R&S EFA-B13

One of these filters can be inserted in the third SAW slot. The 6 MHz filter supports the channel bandwidths defined by Standard M, the 7 MHz filter either VHF channels or the UHF channel bandwidths used in Australia. The 6 MHz SAW filter is the filter most frequently used in ITU-T J.83/B.

The filters fitted are displayed in the status menu.

The 8 MHz SAW filter plays a very important role also in ITU-T J.83/B, although the 6 MHz filter is most commonly used there, because it is needed for automatic shoulder distance measurement.

5.18 Overview of ITU-T J.83/B Measurements

Instrument Test Point	Test Parameter	Instrument Test Point	Test Parameter
At input of cable headend.		At test transmitter/	
TS source for production	Test signal generator for	cable headend	High-precision thermal
GENERATOR R&S DVG	reproducible MPEG2		measurement of output power
	measurements,	Bower Meter B&S NBVS with	
	valious lest sequences	Thermal Power Sensor R&S NRV-Z51	
DTV RECORDER GENERATOR R&S DVRG	Test signal generator for	Monitoring receiver	Basic unit
	reproducible MPEG2 measurements.	at cable headend Test receiver in production	
	various test sequences,	The second se	Order of QAM
	recording of user-defined		Symbol rate
	recording of error events		11U-1 J.83/B amplitude, phase and group-delay spectrum
			Output power
MPEG2 MEASUREMENT	Realtime MPEG2 transport	R&S EFA Model 70/73	END, BER, MER Crest factor
	stream protocol analysis	with option R&S EFA-B4	Shoulder distance (to TR 101 290)
			Frequency offset Echo diagram
MPEG2 REALTIME MONITOR	Realtime MPEG2 transport		Constellation diagram
R&S DVRM	stream protocol monitoring		QAM I/Q parameters
			Option R&S EFA-B4
ANALYZER R&S DVQ	Measurement of signal quality		parameters of the three priorities
Contraction of the second	decoding		Alarm report PAT and PMT
At test transmitter/			
cable headend, in production		cable headend	C/N setting for END measurement
Statement of the owner water and			Simulation of defined receive
	LO harmonics		conditions and impedance
	ITU-T J.83/B spectrum	TV TEST TRANSMITTER	Simulation of transmitter defects
SPECTRUM ANALYZER R&S	Shoulder distance	R&S SFQ Options: NOISE GENERATOR	
FSEx	Crest factor (via signal	FADING SIMULATOR ITU-T J.83/B test transmitter	
	envelope)	for production	Test transmitter for production
			for testing set-top boxes in
		TV TEST TRANSMITTER R&S SEL-J	production
SPECTRUM ANALYZER R&S			
FSP			
SPECTRUM ANALYZER R&S			
FSU			

