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Chapter 1

NUMERATION SYSTEMS

Contents
1.1 Numbersandsymbols . . . .. ...t ittt ittt eteeenesnnesas 1
1.2 Systemsofnumeration . ... . ... ..ot eeeteoesootesnoesas 6
1.3 Decimal versus binarynumeration. . . . . . . . .t vttt ittt 8
1.4 Octal and hexadecimal numeration ... .......¢cc00eeeeeeaes 10
1.5 Octal and hexadecimal to decimalconversion. . ... ... ......... 12
1.6 Conversion from decimalnumeration . . . . . . . . vttt v vttt v e e 13

"There are three types of people: those who can count, and those who can’t.”
Anonymous

1.1 Numbers and symbols

The expression of numerical quantities is something we tend to take for granted. This is both
a good and a bad thing in the study of electronics. It is good, in that we’re accustomed to
the use and manipulation of numbers for the many calculations used in analyzing electronic
circuits. On the other hand, the particular system of notation we’ve been taught from grade
school onward is not the system used internally in modern electronic computing devices, and
learning any different system of notation requires some re-examination of deeply ingrained
assumptions.

First, we have to distinguish the difference between numbers and the symbols we use to
represent numbers. A number is a mathematical quantity, usually correlated in electronics to
a physical quantity such as voltage, current, or resistance. There are many different types of
numbers. Here are just a few types, for example:

VWHOLE NUMBERS:
1, 2, 3, 4, 5 6, 7, 8 9.
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| NTEGERS:
-4, -3, -2, -1, 0, 1, 2, 3, 4.

| RRATI ONAL NUMBERS:
m (approx. 3.1415927), e (approx. 2.718281828),
square root of any prinme

REAL NUMBERS:
(Al one-di nensi onal nunerical values, negative and positive,
i ncludi ng zero, whole, integer, and irrational nunbers)

COVPLEX NUMBERS:
3-j4, 34.5 /7 20°

Different types of numbers find different application in the physical world. Whole numbers
work well for counting discrete objects, such as the number of resistors in a circuit. Integers
are needed when negative equivalents of whole numbers are required. Irrational numbers are
numbers that cannot be exactly expressed as the ratio of two integers, and the ratio of a perfect
circle’s circumference to its diameter (7) is a good physical example of this. The non-integer
quantities of voltage, current, and resistance that we're used to dealing with in DC circuits can
be expressed as real numbers, in either fractional or decimal form. For AC circuit analysis,
however, real numbers fail to capture the dual essence of magnitude and phase angle, and so
we turn to the use of complex numbers in either rectangular or polar form.

If we are to use numbers to understand processes in the physical world, make scientific
predictions, or balance our checkbooks, we must have a way of symbolically denoting them.
In other words, we may know how much money we have in our checking account, but to keep
record of it we need to have some system worked out to symbolize that quantity on paper, or in
some other kind of form for record-keeping and tracking. There are two basic ways we can do
this: analog and digital. With analog representation, the quantity is symbolized in a way that
is infinitely divisible. With digital representation, the quantity is symbolized in a way that is
discretely packaged.

You're probably already familiar with an analog representation of money, and didn’t realize
it for what it was. Have you ever seen a fund-raising poster made with a picture of a ther-
mometer on it, where the height of the red column indicated the amount of money collected for
the cause? The more money collected, the taller the column of red ink on the poster.
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An analog representation
of a numerical quantity

— $50,000
— $40,000
— $30,000
— $20,000
— $10,000

— $0

This is an example of an analog representation of a number. There is no real limit to how
finely divided the height of that column can be made to symbolize the amount of money in the
account. Changing the height of that column is something that can be done without changing
the essential nature of what it is. Length is a physical quantity that can be divided as small
as you would like, with no practical limit. The slide rule is a mechanical device that uses the
very same physical quantity — length — to represent numbers, and to help perform arithmetical
operations with two or more numbers at a time. It, too, is an analog device.

On the other hand, a digital representation of that same monetary figure, written with
standard symbols (sometimes called ciphers), looks like this:

$35, 955. 38

Unlike the "thermometer” poster with its red column, those symbolic characters above can-
not be finely divided: that particular combination of ciphers stand for one quantity and one
quantity only. If more money is added to the account (+ $40.12), different symbols must be
used to represent the new balance ($35,995.50), or at least the same symbols arranged in dif-
ferent patterns. This is an example of digital representation. The counterpart to the slide rule
(analog) is also a digital device: the abacus, with beads that are moved back and forth on rods
to symbolize numerical quantities:
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Slide rule (an analog device)

1 (| IIIIIII I II IIHIIIIIIII I II IIIIII IIIII II IIIIII IIIII l T S“de

Numerical quantities are represented by
the positioning of the slide.

Abacus (a digital device)

Numerical quantities are represented by
the discrete positions of the beads.

Lets contrast these two methods of numerical representation:

ANALOG Dl G TAL

Intuitively understood ----------- Requires training to interpret
Infinitely divisible -------------- Di screte

Prone to errors of precision ------ Absol ute preci sion

Interpretation of numerical symbols is something we tend to take for granted, because it
has been taught to us for many years. However, if you were to try to communicate a quantity
of something to a person ignorant of decimal numerals, that person could still understand the
simple thermometer chart!

The infinitely divisible vs. discrete and precision comparisons are really flip-sides of the
same coin. The fact that digital representation is composed of individual, discrete symbols
(decimal digits and abacus beads) necessarily means that it will be able to symbolize quantities
in precise steps. On the other hand, an analog representation (such as a slide rule’s length)
is not composed of individual steps, but rather a continuous range of motion. The ability
for a slide rule to characterize a numerical quantity to infinite resolution is a trade-off for
imprecision. If a slide rule is bumped, an error will be introduced into the representation of
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the number that was “entered” into it. However, an abacus must be bumped much harder
before its beads are completely dislodged from their places (sufficient to represent a different
number).

Please don’t misunderstand this difference in precision by thinking that digital represen-
tation is necessarily more accurate than analog. Just because a clock is digital doesn’t mean
that it will always read time more accurately than an analog clock, it just means that the
interpretation of its display is less ambiguous.

Divisibility of analog versus digital representation can be further illuminated by talking
about the representation of irrational numbers. Numbers such as = are called irrational, be-
cause they cannot be exactly expressed as the fraction of integers, or whole numbers. Although
you might have learned in the past that the fraction 22/7 can be used for 7 in calculations, this
is just an approximation. The actual number ”pi” cannot be exactly expressed by any finite, or
limited, number of decimal places. The digits of = go on forever:

3. 1415926535897932384 .

It is possible, at least theoretically, to set a slide rule (or even a thermometer column) so
as to perfectly represent the number 7, because analog symbols have no minimum limit to the
degree that they can be increased or decreased. If my slide rule shows a figure of 3.141593
instead of 3.141592654, I can bump the slide just a bit more (or less) to get it closer yet. How-
ever, with digital representation, such as with an abacus, I would need additional rods (place
holders, or digits) to represent 7 to further degrees of precision. An abacus with 10 rods sim-
ply cannot represent any more than 10 digits worth of the number 7, no matter how I set the
beads. To perfectly represent 7, an abacus would have to have an infinite number of beads
and rods! The tradeoff, of course, is the practical limitation to adjusting, and reading, analog
symbols. Practically speaking, one cannot read a slide rule’s scale to the 10th digit of precision,
because the marks on the scale are too coarse and human vision is too limited. An abacus, on
the other hand, can be set and read with no interpretational errors at all.

Furthermore, analog symbols require some kind of standard by which they can be compared
for precise interpretation. Slide rules have markings printed along the length of the slides to
translate length into standard quantities. Even the thermometer chart has numerals written
along its height to show how much money (in dollars) the red column represents for any given
amount of height. Imagine if we all tried to communicate simple numbers to each other by
spacing our hands apart varying distances. The number 1 might be signified by holding our
hands 1 inch apart, the number 2 with 2 inches, and so on. If someone held their hands 17
inches apart to represent the number 17, would everyone around them be able to immediately
and accurately interpret that distance as 17? Probably not. Some would guess short (15 or 16)
and some would guess long (18 or 19). Of course, fishermen who brag about their catches don’t
mind overestimations in quantity!

Perhaps this is why people have generally settled upon digital symbols for representing
numbers, especially whole numbers and integers, which find the most application in everyday
life. Using the fingers on our hands, we have a ready means of symbolizing integers from 0 to
10. We can make hash marks on paper, wood, or stone to represent the same quantities quite
easily:
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5 +5 + 3 =13

Tl

For large numbers, though, the "hash mark” numeration system is too inefficient.

1.2 Systems of numeration

The Romans devised a system that was a substantial improvement over hash marks, because it
used a variety of symbols (or ciphers) to represent increasingly large quantities. The notation
for 1 is the capital letter | . The notation for 5 is the capital letter V. Other ciphers possess
increasing values:

X =10
L =50
C = 100
D = 500
M = 1000

If a cipher is accompanied by another cipher of equal or lesser value to the immediate right
of it, with no ciphers greater than that other cipher to the right of that other cipher, that
other cipher’s value is added to the total quantity. Thus, VI | | symbolizes the number 8, and
CLVI | symbolizes the number 157. On the other hand, if a cipher is accompanied by another
cipher of lesser value to the immediate left, that other cipher’s value is subtracted from the
first. Therefore, | V symbolizes the number 4 (V minus | ), and CMsymbolizes the number 900
(Mminus C). You might have noticed that ending credit sequences for most motion pictures
contain a notice for the date of production, in Roman numerals. For the year 1987, it would
read: MCMLXXXVI | . Let’s break this numeral down into its constituent parts, from left to right:

M = 1000
+
CM = 900
+

L =50
+
XXX = 30
+

V=5
+
=2

Aren’t you glad we don’t use this system of numeration? Large numbers are very difficult to
denote this way, and the left vs. right / subtraction vs. addition of values can be very confusing,
too. Another major problem with this system is that there is no provision for representing
the number zero or negative numbers, both very important concepts in mathematics. Roman
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culture, however, was more pragmatic with respect to mathematics than most, choosing only
to develop their numeration system as far as it was necessary for use in daily life.

We owe one of the most important ideas in numeration to the ancient Babylonians, who
were the first (as far as we know) to develop the concept of cipher position, or place value, in
representing larger numbers. Instead of inventing new ciphers to represent larger numbers,
as the Romans did, they re-used the same ciphers, placing them in different positions from
right to left. Our own decimal numeration system uses this concept, with only ten ciphers (0,
1,2,3,4,5,6,7, 8, and 9) used in "weighted” positions to represent very large and very small
numbers.

Each cipher represents an integer quantity, and each place from right to left in the notation
represents a multiplying constant, or weight, for each integer quantity. For example, if we
see the decimal notation ”1206”, we known that this may be broken down into its constituent
weight-products as such:

1206 = 1000 + 200 + 6
1206 = (1 x 1000) + (2 x 100) + (0 x 10) + (6 x 1)

Each cipher is called a digit in the decimal numeration system, and each weight, or place
value, is ten times that of the one to the immediate right. So, we have a ones place, a tens
place, a hundreds place, a thousands place, and so on, working from right to left.

Right about now, you’re probably wondering why I’'m laboring to describe the obvious. Who
needs to be told how decimal numeration works, after you've studied math as advanced as
algebra and trigonometry? The reason is to better understand other numeration systems, by
first knowing the how’s and why’s of the one you’re already used to.

The decimal numeration system uses ten ciphers, and place-weights that are multiples of
ten. What if we made a numeration system with the same strategy of weighted places, except
with fewer or more ciphers?

The binary numeration system is such a system. Instead of ten different cipher symbols,
with each weight constant being ten times the one before it, we only have fwo cipher symbols,
and each weight constant is twice as much as the one before it. The two allowable cipher
symbols for the binary system of numeration are ”1” and ”0,” and these ciphers are arranged
right-to-left in doubling values of weight. The rightmost place is the ones place, just as with
decimal notation. Proceeding to the left, we have the fwos place, the fours place, the eights
place, the sixteens place, and so on. For example, the following binary number can be expressed,
just like the decimal number 1206, as a sum of each cipher value times its respective weight
constant:

11010
11010

2 +8 + 16 = 26
(1 x 16) + (1 x 8 + (0x4) +(1x2) +(0x1)

This can get quite confusing, as I've written a number with binary numeration (11010),
and then shown its place values and total in standard, decimal numeration form (16 + 8 + 2
= 26). In the above example, we're mixing two different kinds of numerical notation. To avoid
unnecessary confusion, we have to denote which form of numeration we’re using when we write
(or type!). Typically, this is done in subscript form, with a ”2” for binary and a ”10” for decimal,
so the binary number 11010, is equal to the decimal number 26.
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The subscripts are not mathematical operation symbols like superscripts (exponents) are.
All they do is indicate what system of numeration we're using when we write these symbols for
other people to read. If you see ”31,”, all this means is the number three written using decimal
numeration. However, if you see ”3'°”, this means something completely different: three to
the tenth power (59,049). As usual, if no subscript is shown, the cipher(s) are assumed to be
representing a decimal number.

Commonly, the number of cipher types (and therefore, the place-value multiplier) used in a
numeration system is called that system’s base. Binary is referred to as “base two” numeration,
and decimal as "base ten.” Additionally, we refer to each cipher position in binary as a bit rather
than the familiar word digit used in the decimal system.

Now, why would anyone use binary numeration? The decimal system, with its ten ciphers,
makes a lot of sense, being that we have ten fingers on which to count between our two hands.
(It is interesting that some ancient central American cultures used numeration systems with a
base of twenty. Presumably, they used both fingers and toes to count!!). But the primary reason
that the binary numeration system is used in modern electronic computers is because of the
ease of representing two cipher states (0 and 1) electronically. With relatively simple circuitry,
we can perform mathematical operations on binary numbers by representing each bit of the
numbers by a circuit which is either on (current) or off (no current). Just like the abacus
with each rod representing another decimal digit, we simply add more circuits to give us more
bits to symbolize larger numbers. Binary numeration also lends itself well to the storage and
retrieval of numerical information: on magnetic tape (spots of iron oxide on the tape either
being magnetized for a binary ”1” or demagnetized for a binary ”0”), optical disks (a laser-
burned pit in the aluminum foil representing a binary ”"1” and an unburned spot representing
a binary ”0”), or a variety of other media types.

Before we go on to learning exactly how all this is done in digital circuitry, we need to
become more familiar with binary and other associated systems of numeration.

1.3 Decimal versus binary numeration

Let’s count from zero to twenty using four different kinds of numeration systems: hash marks,
Roman numerals, decimal, and binary:

System Hash Mar ks Roman Deci nal Bi nary
Zero n/ a n/ a 0 0
One | I 1 1
Two | Il 2 10
Thr ee [ 1] 11 3 11
Four [ 111 IV 4 100
Five ARRN Vv 5 101
Si x ARRVAE Vi 6 110
Seven ARRYAN Vi 7 111
Ei ght ARRYAREN VI 8 1000
Ni ne AN I X 9 1001
Ten AN ARRE X 10 1010
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El even ARRVAARREE X 11 1011
Twel ve ARRVANARREEEE X1 12 1100
Thirteen [|||/ 1]/ ||| X 13 1101
Fourteen /|[|/ /11! |11 X'V 14 1110
Fifteen FLLLE T T XV 15 1111
Si xt een ARV AR AR XV 16 10000
Seventeen [[[[/ |||/ 1] 1] XVI | 17 10001
Eighteen /||| / /1117 11117 1] XV 18 10010
Nineteen /||| / /1117 11117 111 Xl X 19 10011
Twenty FLLLE L P rid XX 20 10100

Neither hash marks nor the Roman system are very practical for symbolizing large num-
bers. Obviously, place-weighted systems such as decimal and binary are more efficient for the
task. Notice, though, how much shorter decimal notation is over binary notation, for the same
number of quantities. What takes five bits in binary notation only takes two digits in decimal
notation.

This raises an interesting question regarding different numeration systems: how large of
a number can be represented with a limited number of cipher positions, or places? With the
crude hash-mark system, the number of places IS the largest number that can be represented,
since one hash mark ”place” is required for every integer step. For place-weighted systems of
numeration, however, the answer is found by taking base of the numeration system (10 for
decimal, 2 for binary) and raising it to the power of the number of places. For example, 5 digits
in a decimal numeration system can represent 100,000 different integer number values, from
0 to 99,999 (10 to the 5th power = 100,000). 8 bits in a binary numeration system can repre-
sent 256 different integer number values, from 0 to 11111111 (binary), or 0 to 255 (decimal),
because 2 to the 8th power equals 256. With each additional place position to the number field,
the capacity for representing numbers increases by a factor of the base (10 for decimal, 2 for
binary).

An interesting footnote for this topic is the one of the first electronic digital computers,
the Eniac. The designers of the Eniac chose to represent numbers in decimal form, digitally,
using a series of circuits called "ring counters” instead of just going with the binary numeration
system, in an effort to minimize the number of circuits required to represent and calculate very
large numbers. This approach turned out to be counter-productive, and virtually all digital
computers since then have been purely binary in design.

To convert a number in binary numeration to its equivalent in decimal form, all you have to
do is calculate the sum of all the products of bits with their respective place-weight constants.
To illustrate:

Convert 11001101, to decimal form
bits = 1 1 1 O

(SN
o
o
[EEN

N
N Y
=

wei ght = 8
(i n decinal

not ati on)

NP
noOo
N W
o
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The bit on the far right side is called the Least Significant Bit (LSB), because it stands in
the place of the lowest weight (the one’s place). The bit on the far left side is called the Most
Significant Bit (MSB), because it stands in the place of the highest weight (the one hundred
twenty-eight’s place). Remember, a bit value of ”1” means that the respective place weight gets
added to the total value, and a bit value of ”0” means that the respective place weight does not
get added to the total value. With the above example, we have:

12819 + 6419 + 819 + 4190 + 1o = 205y

If we encounter a binary number with a dot (.), called a "binary point” instead of a decimal
point, we follow the same procedure, realizing that each place weight to the right of the point is
one-half the value of the one to the left of it (just as each place weight to the right of a decimal
point is one-tenth the weight of the one to the left of it). For example:

Convert 101.011, to decimal form

bits = 1 0 1

0 1 1
wei ght = 4 2 1 1 1 1
(i n decinal [
not ati on) 2 4 8

4,y + 1,0 + 0.25,, + 0.125,, = 5.375;

1.4 Octal and hexadecimal numeration

Because binary numeration requires so many bits to represent relatively small numbers com-
pared to the economy of the decimal system, analyzing the numerical states inside of digital
electronic circuitry can be a tedious task. Computer programmers who design sequences of
number codes instructing a computer what to do would have a very difficult task if they were
forced to work with nothing but long strings of 1’s and 0’s, the "native language” of any digital
circuit. To make it easier for human engineers, technicians, and programmers to "speak” this
language of the digital world, other systems of place-weighted numeration have been made
which are very easy to convert to and from binary.

One of those numeration systems is called octal, because it is a place-weighted system with
a base of eight. Valid ciphers include the symbols 0, 1, 2, 3, 4, 5, 6, and 7. Each place weight
differs from the one next to it by a factor of eight.

Another system is called hexadecimal, because it is a place-weighted system with a base of
sixteen. Valid ciphers include the normal decimal symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus
six alphabetical characters A, B, C, D, E, and F, to make a total of sixteen. As you might have
guessed already, each place weight differs from the one before it by a factor of sixteen.

Let’s count again from zero to twenty using decimal, binary, octal, and hexadecimal to
contrast these systems of numeration:

Nunber Deci mal Bi nary Cct al Hexadeci mal
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Zero 0 0 0 0
One 1 1 1 1
Two 2 10 2 2
Thr ee 3 11 3 3
Four 4 100 4 4
Five 5 101 5 5
Si x 6 110 6 6
Seven 7 111 7 7
Ei ght 8 1000 10 8
Ni ne 9 1001 11 9
Ten 10 1010 12 A
El even 11 1011 13 B
Twel ve 12 1100 14 C
Thirteen 13 1101 15 D
Fourt een 14 1110 16 E
Fifteen 15 1111 17 F
Si xt een 16 10000 20 10
Sevent een 17 10001 21 11
Ei ght een 18 10010 22 12
N net een 19 10011 23 13
Twenty 20 10100 24 14

Octal and hexadecimal numeration systems would be pointless if not for their ability to be
easily converted to and from binary notation. Their primary purpose in being is to serve as a
”shorthand” method of denoting a number represented electronically in binary form. Because
the bases of octal (eight) and hexadecimal (sixteen) are even multiples of binary’s base (two),
binary bits can be grouped together and directly converted to or from their respective octal or
hexadecimal digits. With octal, the binary bits are grouped in three’s (because 2% = 8), and
with hexadecimal, the binary bits are grouped in four’s (because 2* = 16):

Bl NARY TO OCTAL CONVERSI ON
Convert 10110111.1, to octal

implied zero i mplied zeros

| |
010 110 111 100

Convert each group of bits #it# H#Hitt #i# | #HH#
to its octal equivalent: 2 6 7 4
Answer : 10110111.1, = 267.4s

We had to group the bits in three’s, from the binary point left, and from the binary point
right, adding (implied) zeros as necessary to make complete 3-bit groups. Each octal digit was
translated from the 3-bit binary groups. Binary-to-Hexadecimal conversion is much the same:

Bl NARY TO HEXADECI MAL CONVERSI ON
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Convert 10110111.1, to hexadeci nal

i mplied zeros
[
. 1011 0111 1000
Convert each group of bits ---- R
to its hexadeci nal equival ent: B 7 8

Answer : 10110111.1, = B7.84

Here we had to group the bits in four’s, from the binary point left, and from the binary point
right, adding (implied) zeros as necessary to make complete 4-bit groups:

Likewise, the conversion from either octal or hexadecimal to binary is done by taking each
octal or hexadecimal digit and converting it to its equivalent binary (3 or 4 bit) group, then
putting all the binary bit groups together.

Incidentally, hexadecimal notation is more popular, because binary bit groupings in digital
equipment are commonly multiples of eight (8, 16, 32, 64, and 128 bit), which are also multiples
of 4. Octal, being based on binary bit groups of 3, doesn’t work out evenly with those common
bit group sizings.

1.5 Octal and hexadecimal to decimal conversion

Although the prime intent of octal and hexadecimal numeration systems is for the "shorthand”
representation of binary numbers in digital electronics, we sometimes have the need to convert
from either of those systems to decimal form. Of course, we could simply convert the hexadeci-
mal or octal format to binary, then convert from binary to decimal, since we already know how
to do both, but we can also convert directly.

Because octal is a base-eight numeration system, each place-weight value differs from ei-
ther adjacent place by a factor of eight. For example, the octal number 245.37 can be broken
down into place values as such:

oct al

digits = 2 4 5 3 7

wei ght = 6 8 1 1 1

(in decinal 4 [

not ati on) 8 6
4

The decimal value of each octal place-weight times its respective cipher multiplier can be
determined as follows:

(2 X 6410) + (4 X 810) + (5 X 110) + (3 x 0. 12510) +
(7 x 0.015625,5) = 165.484375)
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The technique for converting hexadecimal notation to decimal is the same, except that each
successive place-weight changes by a factor of sixteen. Simply denote each digit’s weight,
multiply each hexadecimal digit value by its respective weight (in decimal form), then add up
all the decimal values to get a total. For example, the hexadecimal number 30F.A9:4 can be
converted like this:

hexadeci mal

digits = 3 0 F A 9
wei ght = 2 1 1 1 1
(i n decinal 5 6 T
not at i on) 6 1 2
6 5

6

(3 X 25610) + (0 X 1610) + (15 X 110) + (10 x 0. 062510) +
(9 x 0.00390625,,) = 783.66015625

These basic techniques may be used to convert a numerical notation of any base into decimal
form, if you know the value of that numeration system’s base.

1.6 Conversion from decimal numeration

Because octal and hexadecimal numeration systems have bases that are multiples of binary
(base 2), conversion back and forth between either hexadecimal or octal and binary is very
easy. Also, because we are so familiar with the decimal system, converting binary, octal, or
hexadecimal to decimal form is relatively easy (simply add up the products of cipher values
and place-weights). However, conversion from decimal to any of these “strange” numeration
systems is a different matter.

The method which will probably make the most sense is the trial-and-fit” method, where
you try to ”fit” the binary, octal, or hexadecimal notation to the desired value as represented
in decimal form. For example, let’s say that I wanted to represent the decimal value of 87 in
binary form. Let’s start by drawing a binary number field, complete with place-weight values:

00.
A
o
o

wei ght =
(i n decinal
not at i on)

0N
no
N W !
o R

Well, we know that we won’t have a ”1” bit in the 128’s place, because that would immedi-
ately give us a value greater than 87. However, since the next weight to the right (64) is less
than 87, we know that we must have a ”1” there.

1
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Deci mal value so far = 64

Oo.
a
o
-

wei ght = 6
(i n decinal 4
not at i on)

N oW
okt

If we were to make the next place to the right a ”1” as well, our total value would be 64,
+ 3219, or 961(. This is greater than 87y, so we know that this bit must be a ”0”. If we make
the next (16’s) place bit equal to ”1,” this brings our total value to 64y + 161, or 80,9, which is
closer to our desired value (87,¢) without exceeding it:

1 0 1
. - - - - - - Deci mal val ue so far = 80
wei ght = 6 3 1 8 4 2 1
(i n decinal 4 2 6

not at i on)

By continuing in this progression, setting each lesser-weight bit as we need to come up to
our desired total value without exceeding it, we will eventually arrive at the correct figure:

1 0 1 0 1 1 1
. - - - - - - - Deci mal val ue so far = 87
wei ght = 6 3 1 8 4 2 1
(i n decinal 4 2 6

not ati on)

This trial-and-fit strategy will work with octal and hexadecimal conversions, too. Let’s take
the same decimal figure, 87,9, and convert it to octal numeration:

o !
= !

wei ght = 6
(in decinal 4
not ati on)

If we put a cipher of ”1” in the 64’s place, we would have a total value of 64, (less than
8710). If we put a cipher of ”2” in the 64’s place, we would have a total value of 128, (greater
than 87,). This tells us that our octal numeration must start with a ”1” in the 64’s place:

1
. - - - Deci mal value so far = 64
wei ght = 6 8 1
(in decinal 4
not ati on)

Now, we need to experiment with cipher values in the 8’s place to try and get a total (deci-
mal) value as close to 87 as possible without exceeding it. Trying the first few cipher options,
we get:
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"1" = 6410 + 810 = 7219
"2" = 6419 + 1657 = 804
"3" = 6419 + 244, = 88y

A cipher value of ”3” in the 8’s place would put us over the desired total of 87, so ”2” it is!

1 2
. - - - Deci mal value so far = 80
wei ght = 6 8 1
(in deci mal 4
not at i on)

Now, all we need to make a total of 87 is a cipher of ”7” in the 1’s place:

1 2 7
. - - - Deci mal value so far = 87
wei ght = 6 8 1
(in decinal 4
not ati on)

Of course, if you were paying attention during the last section on octal/binary conversions,
you will realize that we can take the binary representation of (decimal) 87y, which we previ-
ously determined to be 10101115, and easily convert from that to octal to check our work:

I nplied zeros

|
001 010 111  Binary

1 2 7 Cct al
Answer: 1010111, = 127g

Can we do decimal-to-hexadecimal conversion the same way? Sure, but who would want
to? This method is simple to understand, but laborious to carry out. There is another way to do
these conversions, which is essentially the same (mathematically), but easier to accomplish.

This other method uses repeated cycles of division (using decimal notation) to break the
decimal numeration down into multiples of binary, octal, or hexadecimal place-weight values.
In the first cycle of division, we take the original decimal number and divide it by the base of
the numeration system that we’re converting to (binary=2 octal=8, hex=16). Then, we take the
whole-number portion of division result (quotient) and divide it by the base value again, and
so on, until we end up with a quotient of less than 1. The binary, octal, or hexadecimal digits
are determined by the "remainders” left over by each division step. Let’s see how this works
for binary, with the decimal example of 871:

87 Divide 87 by 2, to get a quotient of 43.5
--- = 43.5 Division "remainder" = 1, or the < 1 portion
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21.5

10.5

5.0

2.5

1.0

0.5
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of the quotient times the divisor (0.5 x 2)

Take the whol e-nunmber portion of 43.5 (43)
and divide it by 2 to get 21.5, or 21 with
a remai nder of 1

And so on . . . remainder =1 (0.5 x 2)
And so on . . . remainder =0
And so on . . . remainder =1 (0.5 x 2)
And so on . . . renmainder =0

until we get a quotient of less than 1
remai nder = 1 (0.5 x 2)

The binary bits are assembled from the remainders of the successive division steps, begin-
ning with the LSB and proceeding to the MSB. In this case, we arrive at a binary notation of
10101115. When we divide by 2, we will always get a quotient ending with either ”.0” or ”.5”,
i.e. a remainder of either O or 1. As was said before, this repeat-division technique for con-
version will work for numeration systems other than binary. If we were to perform successive
divisions using a different number, such as 8 for conversion to octal, we will necessarily get
remainders between 0 and 7. Let’s try this with the same decimal number, 87,:

87

8

10

8

1

8

10. 875

1.25

0. 125

Divide 87 by 8, to get a quotient of 10.875
Division "remainder" =7, or the < 1 portion
of the quotient tinmes the divisor (.875 x 8)

Remai nder = 2
Quotient is less than 1, so we’'ll stop here.
Rermai nder = 1
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RESULT: 8710 = 1274

We can use a similar technique for converting numeration systems dealing with quantities
less than 1, as well. For converting a decimal number less than 1 into binary, octal, or hexadec-
imal, we use repeated multiplication, taking the integer portion of the product in each step as
the next digit of our converted number. Let’s use the decimal number 0.8125; as an example,
converting to binary:

0.8125 x 2 = 1.625 I nteger portion of product =1

0.625 x 2 = 1.25 Take < 1 portion of product and remultiply
I nteger portion of product =1

0.25 x 2 = 0.5 I nteger portion of product =0

0.5x 2 =10 I nteger portion of product =1

Stop when product is a pure integer
(ends with .0)

RESULT: 0. 8125 = 0.1101,

As with the repeat-division process for integers, each step gives us the next digit (or bit)
further away from the ”point.” With integer (division), we worked from the LSB to the MSB
(right-to-left), but with repeated multiplication, we worked from the left to the right. To convert
a decimal number greater than 1, with a | 1 component, we must use both techniques, one at a
time. Take the decimal example of 54.40625, converting to binary:

REPEATED DI VI SION FOR THE | NTEGER PORTI ON:

54

--- = 27.0 Remai nder = 0

2

27

--- =13.5 Rermai nder = 1 (0.5 x 2)
2

13

--- = 86.5 Remai nder = 1 (0.5 x 2)
2

6

--- =3.0 Remai nder = 0

2

3
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--- = 1.5 Renai nder = 1 (0.5 x 2)
2
1
--- =0.5 Rermai nder = 1 (0.5 x 2)
2

PARTI AL ANSWER: 54, = 110110,

REPEATED MULTI PLI CATION FOR THE < 1 PORTI ON:

0.40625 x 2 = 0.8125 Integer portion of product = 0

0.8125 x 2 = 1.625 I nteger portion of product =1
0.625 x 2 =1.25 I nteger portion of product =1
0.25 x 2 =0.5 I nteger portion of product =0
0.5x 2=10 I nteger portion of product =1

PARTI AL ANSVER:  0.40625;, = 0.01101,
COVPLETE ANSVER 54,, + 0.40625,, = 54.40625,

110110, + 0.01101, = 110110. 01101,
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2.1 Numbers versus numeration

It is imperative to understand that the type of numeration system used to represent numbers
has no impact upon the outcome of any arithmetical function (addition, subtraction, multipli-
cation, division, roots, powers, or logarithms). A number is a number is a number; one plus
one will always equal two (so long as we're dealing with real numbers), no matter how you
symbolize one, one, and two. A prime number in decimal form is still prime if it’s shown in
binary form, or octal, or hexadecimal. 7 is still the ratio between the circumference and diam-
eter of a circle, no matter what symbol(s) you use to denote its value. The essential functions
and interrelations of mathematics are unaffected by the particular system of symbols we might
choose to represent quantities. This distinction between numbers and systems of numeration
is critical to understand.

The essential distinction between the two is much like that between an object and the
spoken word(s) we associate with it. A house is still a house regardless of whether we call it
by its English name house or its Spanish name casa. The first is the actual thing, while the
second is merely the symbol for the thing.

That being said, performing a simple arithmetic operation such as addition (longhand) in
binary form can be confusing to a person accustomed to working with decimal numeration
only. In this lesson, we'll explore the techniques used to perform simple arithmetic functions

19
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on binary numbers, since these techniques will be employed in the design of electronic circuits
to do the same. You might take longhand addition and subtraction for granted, having used
a calculator for so long, but deep inside that calculator’s circuitry all those operations are
performed ”longhand,” using binary numeration. To understand how that’s accomplished, we
need to review to the basics of arithmetic.

2.2 Binary addition

Adding binary numbers is a very simple task, and very similar to the longhand addition of
decimal numbers. As with decimal numbers, you start by adding the bits (digits) one column,
or place weight, at a time, from right to left. Unlike decimal addition, there is little to memorize
in the way of rules for the addition of binary bits:

0
=11

PR, ORO
+ 4+ + + +
PR R OO

+ 1o
PR R EPO

Just as with decimal addition, when the sum in one column is a two-bit (two-digit) number,
the least significant figure is written as part of the total sum and the most significant figure is
“carried” to the next left column. Consider the following examples:

11 1 <--- Carry bits ----- > 11
1001101 1001001 1000111
+ 0010010 + 0011001 + 0010110
1011111 1100010 1011101

The addition problem on the left did not require any bits to be carried, since the sum of bits
in each column was either 1 or 0, not 10 or 11. In the other two problems, there definitely were
bits to be carried, but the process of addition is still quite simple.

As we'll see later, there are ways that electronic circuits can be built to perform this very
task of addition, by representing each bit of each binary number as a voltage signal (either
“high,” for a 1; or "low” for a 0). This is the very foundation of all the arithmetic which modern
digital computers perform.

2.3 Negative binary numbers

With addition being easily accomplished, we can perform the operation of subtraction with the
same technique simply by making one of the numbers negative. For example, the subtraction
problem of 7 - 5 is essentially the same as the addition problem 7 + (-5). Since we already know
how to represent positive numbers in binary, all we need to know now is how to represent their
negative counterparts and we’ll be able to subtract.
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Usually we represent a negative decimal number by placing a minus sign directly to the left
of the most significant digit, just as in the example above, with -5. However, the whole purpose
of using binary notation is for constructing on/off circuits that can represent bit values in
terms of voltage (2 alternative values: either "high” or "low”). In this context, we don’t have
the luxury of a third symbol such as a "minus” sign, since these circuits can only be on or off
(two possible states). One solution is to reserve a bit (circuit) that does nothing but represent
the mathematical sign:

101, = 5y (positive)

Extra bit, representing sign (O=positive, 1=negative)

I
01015 = 549 (positive)

Extra bit, representing sign (O=positive, l=negative)

|
11015 = -54 (negative)

As you can see, we have to be careful when we start using bits for any purpose other than
standard place-weighted values. Otherwise, 1101, could be misinterpreted as the number
thirteen when in fact we mean to represent negative five. To keep things straight here, we must
first decide how many bits are going to be needed to represent the largest numbers we’ll be
dealing with, and then be sure not to exceed that bit field length in our arithmetic operations.
For the above example, I've limited myself to the representation of numbers from negative
seven (1111,) to positive seven (01115), and no more, by making the fourth bit the ”sign” bit.
Only by first establishing these limits can I avoid confusion of a negative number with a larger,
positive number.

Representing negative five as 11015 is an example of the sign-magnitude system of nega-
tive binary numeration. By using the leftmost bit as a sign indicator and not a place-weighted
value, I am sacrificing the "pure” form of binary notation for something that gives me a prac-
tical advantage: the representation of negative numbers. The leftmost bit is read as the sign,
either positive or negative, and the remaining bits are interpreted according to the standard
binary notation: left to right, place weights in multiples of two.

As simple as the sign-magnitude approach is, it is not very practical for arithmetic purposes.
For instance, how do I add a negative five (11015) to any other number, using the standard
technique for binary addition? I'd have to invent a new way of doing addition in order for it
to work, and if I do that, I might as well just do the job with longhand subtraction; there’s no
arithmetical advantage to using negative numbers to perform subtraction through addition if
we have to do it with sign-magnitude numeration, and that was our goal!

There’s another method for representing negative numbers which works with our familiar
technique of longhand addition, and also happens to make more sense from a place-weighted
numeration point of view, called complementation. With this strategy, we assign the leftmost
bit to serve a special purpose, just as we did with the sign-magnitude approach, defining our
number limits just as before. However, this time, the leftmost bit is more than just a sign bit;
rather, it possesses a negative place-weight value. For example, a value of negative five would
be represented as such:
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Extra bit, place weight = negative eight

|
1011, = 549 (negative)

(1 x -819) + (0x 40 + (1 x 2 + (1x1yp) = -5

With the right three bits being able to represent a magnitude from zero through seven, and
the leftmost bit representing either zero or negative eight, we can successfully represent any
integer number from negative seven (10015 = -81¢ + 119 = -11¢) to positive seven (01115 = 019 +
710 = T10)-

Representing positive numbers in this scheme (with the fourth bit designated as the neg-
ative weight) is no different from that of ordinary binary notation. However, representing
negative numbers is not quite as straightforward:

zero 0000

positive one 0001 negative one 1111
positive two 0010 negati ve two 1110
positive three 0011 negative three 1101
positive four 0100 negative four 1100
positive five 0101 negative five 1011
positive six 0110 negative six 1010
positive seven 0111 negati ve seven 1001

negati ve ei ght 1000

Note that the negative binary numbers in the right column, being the sum of the right three
bits’ total plus the negative eight of the leftmost bit, don’t "count” in the same progression as
the positive binary numbers in the left column. Rather, the right three bits have to be set at
the proper value to equal the desired (negative) total when summed with the negative eight
place value of the leftmost bit.

Those right three bits are referred to as the two’s complement of the corresponding positive
number. Consider the following comparison:

positive nunber two’ s conpl enent
001 111
010 110
011 101
100 100
101 011
110 010
111 001

In this case, with the negative weight bit being the fourth bit (place value of negative eight),
the two’s complement for any positive number will be whatever value is needed to add to
negative eight to make that positive value’s negative equivalent. Thankfully, there’s an easy
way to figure out the two’s complement for any binary number: simply invert all the bits of that
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number, changing all 1’s to 0’s and vice versa (to arrive at what is called the one’s complement)
and then add one! For example, to obtain the two’s complement of five (1015), we would first
invert all the bits to obtain 0105 (the "one’s complement”), then add one to obtain 011, or -5
in three-bit, two’s complement form.

Interestingly enough, generating the two’s complement of a binary number works the same
if you manipulate all the bits, including the leftmost (sign) bit at the same time as the mag-
nitude bits. Let’s try this with the former example, converting a positive five to a negative
five, but performing the complementation process on all four bits. We must be sure to include
the 0 (positive) sign bit on the original number, five (01015). First, inverting all bits to obtain
the one’s complement: 1010;. Then, adding one, we obtain the final answer: 10115, or -5
expressed in four-bit, two’s complement form.

It is critically important to remember that the place of the negative-weight bit must be al-
ready determined before any two’s complement conversions can be done. If our binary numera-
tion field were such that the eighth bit was designated as the negative-weight bit (100000005),
we’d have to determine the two’s complement based on all seven of the other bits. Here, the
two’s complement of five (0000101,) would be 1111011,. A positive five in this system would
be represented as 000001015, and a negative five as 111110115.

2.4 Subtraction

We can subtract one binary number from another by using the standard techniques adapted
for decimal numbers (subtraction of each bit pair, right to left, "borrowing” as needed from bits
to the left). However, if we can leverage the already familiar (and easier) technique of binary
addition to subtract, that would be better. As we just learned, we can represent negative binary
numbers by using the "two’s complement” method and a negative place-weight bit. Here, we’ll
use those negative binary numbers to subtract through addition. Here’s a sample problem:

Subtraction: 71 - 51p Addition equivalent: 79 + (-519)

If all we need to do is represent seven and negative five in binary (two’s complemented)
form, all we need is three bits plus the negative-weight bit:

positive seven
negative five

0111,
1011,

Now, let’s add them together:
1111 <--- Carry bits

0111
+ 1011

Discard extra bit
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Answer = 0010,

Since we’ve already defined our number bit field as three bits plus the negative-weight bit,
the fifth bit in the answer (1) will be discarded to give us a result of 0010,, or positive two,
which is the correct answer.

Another way to understand why we discard that extra bit is to remember that the leftmost
bit of the lower number possesses a negative weight, in this case equal to negative eight.
When we add these two binary numbers together, what we’re actually doing with the MSBs is
subtracting the lower number’s MSB from the upper number’s MSB. In subtraction, one never
“carries” a digit or bit on to the next left place-weight.

Let’s try another example, this time with larger numbers. If we want to add -25,; to 184,
we must first decide how large our binary bit field must be. To represent the largest (absolute
value) number in our problem, which is twenty-five, we need at least five bits, plus a sixth bit
for the negative-weight bit. Let’s start by representing positive twenty-five, then finding the
two’s complement and putting it all together into one numeration:

+25;;, = 011001, (showing all six bits)

One’ s conpl ement of 11001, = 100110,

One’s conplenent + 1 = two's conpl enent = 100111,
'2510 = 1001112

Essentially, we’re representing negative twenty-five by using the negative-weight (sixth)
bit with a value of negative thirty-two, plus positive seven (binary 1115).
Now, let’s represent positive eighteen in binary form, showing all six bits:

1810 = 0100102
Now, let’'s add themtogether and see what we get:

11 <--- Carry bits
100111
+ 010010

111001

Since there were no ”extra” bits on the left, there are no bits to discard. The leftmost bit
on the answer is a 1, which means that the answer is negative, in two’s complement form,
as it should be. Converting the answer to decimal form by summing all the bits times their
respective weight values, we get:

(1 X '3210) + (1 X 1610) + (1 X 810) + (1 X 110) = -710

Indeed -7, is the proper sum of -25,7 and 18,.
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2.5 Overflow

One caveat with signed binary numbers is that of overflow, where the answer to an addition or
subtraction problem exceeds the magnitude which can be represented with the alloted number
of bits. Remember that the place of the sign bit is fixed from the beginning of the problem.
With the last example problem, we used five binary bits to represent the magnitude of the
number, and the left-most (sixth) bit as the negative-weight, or sign, bit. With five bits to
represent magnitude, we have a representation range of 2°, or thirty-two integer steps from 0
to maximum. This means that we can represent a number as high as +31;7 (0111115), or as
low as -32;7 (1000005). If we set up an addition problem with two binary numbers, the sixth
bit used for sign, and the result either exceeds +311( or is less than -32;y, our answer will be
incorrect. Let’s try adding 17,7 and 19, to see how this overflow condition works for excessive
positive numbers:

17,0 = 10001, 19,0 = 10011,

1 11 <--- Carry bits
(Showi ng sign bits) 010001
+ 010011

100100

The answer (100100,), interpreted with the sixth bit as the -32,( place, is actually equal
to -28;p, not +361y as we should get with +17,7 and +19;7 added together! Obviously, this is
not correct. What went wrong? The answer lies in the restrictions of the six-bit number field
within which we’re working Since the magnitude of the true and proper sum (36,) exceeds the
allowable limit for our designated bit field, we have an overflow error. Simply put, six places
doesn’t give enough bits to represent the correct sum, so whatever figure we obtain using the
strategy of discarding the left-most "carry” bit will be incorrect.

A similar error will occur if we add two negative numbers together to produce a sum that
is too low for our six-bit binary field. Let’s try adding -17,9 and -19;( together to see how this
works (or doesn’t work, as the case may be!):

- 1710 = 1011112 - 1910 = 1011012

1 1111 <--- Carry bits
(Showi ng sign bits) 101111
+ 101101

1011100
I

Di scard extra bit

FI NAL ANSVER: 011100, = +28y9

The (incorrect) answer is a positive twenty-eight. The fact that the real sum of negative sev-
enteen and negative nineteen was too low to be properly represented with a five bit magnitude
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field and a sixth sign bit is the root cause of this difficulty.
Let’s try these two problems again, except this time using the seventh bit for a sign bit, and
allowing the use of 6 bits for representing the magnitude:

1710 + 199 (-1710) + (-190)
1 11 11 1111
0010001 1101111

+ 0010011 + 1101101
01001004 11011100,

Di scard extra bit

ANSVERS: 0100100,
1011100,

+3610
- 3610

By using bit fields sufficiently large to handle the magnitude of the sums, we arrive at the
correct answers.

In these sample problems we’ve been able to detect overflow errors by performing the ad-
dition problems in decimal form and comparing the results with the binary answers. For ex-
ample, when adding +17,¢ and +19;( together, we knew that the answer was supposed to be
+3619, so when the binary sum checked out to be -28,;, we knew that something had to be
wrong. Although this is a valid way of detecting overflow, it is not very efficient. After all, the
whole idea of complementation is to be able to reliably add binary numbers together and not
have to double-check the result by adding the same numbers together in decimal form! This is
especially true for the purpose of building electronic circuits to add binary quantities together:
the circuit has to be able to check itself for overflow without the supervision of a human being
who already knows what the correct answer is.

What we need is a simple error-detection method that doesn’t require any additional arith-
metic. Perhaps the most elegant solution is to check for the sign of the sum and compare
it against the signs of the numbers added. Obviously, two positive numbers added together
should give a positive result, and two negative numbers added together should give a negative
result. Notice that whenever we had a condition of overflow in the example problems, the sign
of the sum was always opposite of the two added numbers: +17,y plus +19¢ giving -28;(, or
-17,¢ plus -19;( giving +28;4. By checking the signs alone we are able to tell that something is
wrong.

But what about cases where a positive number is added to a negative number? What sign
should the sum be in order to be correct. Or, more precisely, what sign of sum would neces-
sarily indicate an overflow error? The answer to this is equally elegant: there will never be an
overflow error when two numbers of opposite signs are added together! The reason for this is
apparent when the nature of overflow is considered. Overflow occurs when the magnitude of a
number exceeds the range allowed by the size of the bit field. The sum of two identically-signed
numbers may very well exceed the range of the bit field of those two numbers, and so in this
case overflow is a possibility. However, if a positive number is added to a negative number, the
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sum will always be closer to zero than either of the two added numbers: its magnitude must be
less than the magnitude of either original number, and so overflow is impossible.

Fortunately, this technique of overflow detection is easily implemented in electronic cir-
cuitry, and it is a standard feature in digital adder circuits: a subject for a later chapter.

2.6 Bit groupings

The singular reason for learning and using the binary numeration system in electronics is to
understand how to design, build, and troubleshoot circuits that represent and process numeri-
cal quantities in digital form. Since the bivalent (two-valued) system of binary bit numeration
lends itself so easily to representation by "on” and ”off” transistor states (saturation and cutoff,
respectively), it makes sense to design and build circuits leveraging this principle to perform
binary calculations.

If we were to build a circuit to represent a binary number, we would have to allocate enough
transistor circuits to represent as many bits as we desire. In other words, in designing a digital
circuit, we must first decide how many bits (maximum) we would like to be able to represent,
since each bit requires one on/off circuit to represent it. This is analogous to designing an
abacus to digitally represent decimal numbers: we must decide how many digits we wish to
handle in this primitive "calculator” device, for each digit requires a separate rod with its own
beads.

A 10-rod abacus

NSR

Each rod represents
a single decimal digit

A ten-rod abacus would be able to represent a ten-digit decimal number, or a maxmium
value of 9,999,999,999. If we wished to represent a larger number on this abacus, we would be
unable to, unless additional rods could be added to it.

In digital, electronic computer design, it is common to design the system for a common ”bit
width:” a maximum number of bits allocated to represent numerical quantities. Early digital
computers handled bits in groups of four or eight. More modern systems handle numbers in
clusters of 32 bits or more. To more conveniently express the "bit width” of such clusters in a
digital computer, specific labels were applied to the more common groupings.
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Eight bits, grouped together to form a single binary quantity, is known as a byte. Four bits,
grouped together as one binary number, is known by the humorous title of nibble, often spelled
as nybble.

A multitude of terms have followed byte and nibble for labeling specfiic groupings of binary
bits. Most of the terms shown here are informal, and have not been made ”authoritative” by
any standards group or other sanctioning body. However, their inclusion into this chapter is
warranted by their occasional appearance in technical literature, as well as the levity they add
to an otherwise dry subject:

e Bit: A single, bivalent unit of binary notation. Equivalent to a decimal "digit.”
e Crumb, Tydbit, or Tayste: Two bits.

e Nibble, or Nybble: Four bits.

Nickle: Five bits.

Byte: Eight bits.
Deckle: Ten bits.

e Playte: Sixteen bits.
e Dynner: Thirty-two bits.
e Word: (system dependent).

The most ambiguous term by far is word, referring to the standard bit-grouping within a
particular digital system. For a computer system using a 32 bit-wide “data path,” a word”
would mean 32 bits. If the system used 16 bits as the standard grouping for binary quantities,
a "word” would mean 16 bits. The terms playte and dynner, by contrast, always refer to 16 and
32 bits, respectively, regardless of the system context in which they are used.

Context dependence is likewise true for derivative terms of word, such as double word
and longword (both meaning twice the standard bit-width), half~word (half the standard bit-
width), and quad (meaning four times the standard bit-width). One humorous addition to this
somewhat boring collection of word-derivatives is the term chawmp, which means the same as
half-word. For example, a chawmp would be 16 bits in the context of a 32-bit digital system,
and 18 bits in the context of a 36-bit system. Also, the term gawble is sometimes synonymous
with word.

Definitions for bit grouping terms were taken from Eric S. Raymond’s "Jargon Lexicon,” an
indexed collection of terms — both common and obscure — germane to the world of computer
programming.
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3.1 Digital signals and gates

While the binary numeration system is an interesting mathematical abstraction, we haven’t
yet seen its practical application to electronics. This chapter is devoted to just that: practically
applying the concept of binary bits to circuits. What makes binary numeration so important to
the application of digital electronics is the ease in which bits may be represented in physical
terms. Because a binary bit can only have one of two different values, either 0 or 1, any
physical medium capable of switching between two saturated states may be used to represent a
bit. Consequently, any physical system capable of representing binary bits is able to represent
numerical quantities, and potentially has the ability to manipulate those numbers. This is the
basic concept underlying digital computing.

Electronic circuits are physical systems that lend themselves well to the representation of
binary numbers. Transistors, when operated at their bias limits, may be in one of two differ-
ent states: either cutoff (no controlled current) or saturation (maximum controlled current). If
a transistor circuit is designed to maximize the probability of falling into either one of these
states (and not operating in the linear, or active, mode), it can serve as a physical representa-
tion of a binary bit. A voltage signal measured at the output of such a circuit may also serve as
a representation of a single bit, a low voltage representing a binary ”0” and a (relatively) high
voltage representing a binary ”1.” Note the following transistor circuit:

Transistor in saturation

:

*— —

\ — 5V
— K

V,, =5V /

"high"input — "low" output

0V ="low" logic level (0)
5V ="high" logic level (1)

In this circuit, the transistor is in a state of saturation by virtue of the applied input voltage
(5 volts) through the two-position switch. Because it’s saturated, the transistor drops very
little voltage between collector and emitter, resulting in an output voltage of (practically) 0
volts. If we were using this circuit to represent binary bits, we would say that the input signal
is a binary ”1” and that the output signal is a binary ”0.” Any voltage close to full supply
voltage (measured in reference to ground, of course) is considered a ”1” and a lack of voltage is
considered a ”0.” Alternative terms for these voltage levels are high (same as a binary ”1”) and
low (same as a binary ”0”). A general term for the representation of a binary bit by a circuit
voltage is logic level.
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Moving the switch to the other position, we apply a binary ”0” to the input and receive a
binary ”1” at the output:

Transistor in cutoff

"low"input — "high" output

0V ="low" logic level (0)
5V ="high" logic level (1)

What we’ve created here with a single transistor is a circuit generally known as a logic
gate, or simply gate. A gate is a special type of amplifier circuit designed to accept and gener-
ate voltage signals corresponding to binary 1’s and 0’s. As such, gates are not intended to be
used for amplifying analog signals (voltage signals between 0 and full voltage). Used together,
multiple gates may be applied to the task of binary number storage (memory circuits) or ma-
nipulation (computing circuits), each gate’s output representing one bit of a multi-bit binary
number. Just how this is done is a subject for a later chapter. Right now it is important to focus
on the operation of individual gates.

The gate shown here with the single transistor is known as an inverter, or NOT gate, be-
cause it outputs the exact opposite digital signal as what is input. For convenience, gate circuits
are generally represented by their own symbols rather than by their constituent transistors
and resistors. The following is the symbol for an inverter:

Inverter, or NOT gate

Input 4[>07 Output

An alternative symbol for an inverter is shown here:

Input Hl[} Output

Notice the triangular shape of the gate symbol, much like that of an operational amplifier.
As was stated before, gate circuits actually are amplifiers. The small circle, or "bubble” shown
on either the input or output terminal is standard for representing the inversion function. As
you might suspect, if we were to remove the bubble from the gate symbol, leaving only a trian-
gle, the resulting symbol would no longer indicate inversion, but merely direct amplification.
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Such a symbol and such a gate actually do exist, and it is called a buffer, the subject of the next
section.

Like an operational amplifier symbol, input and output connections are shown as single
wires, the implied reference point for each voltage signal being "ground.” In digital gate cir-
cuits, ground is almost always the negative connection of a single voltage source (power sup-
ply). Dual, or "split,” power supplies are seldom used in gate circuitry. Because gate circuits are
amplifiers, they require a source of power to operate. Like operational amplifiers, the power
supply connections for digital gates are often omitted from the symbol for simplicity’s sake. If
we were to show all the necessary connections needed for operating this gate, the schematic
would look something like this:

VCC

— [>o_ -

Vin

— Ground

Power supply conductors are rarely shown in gate circuit schematics, even if the power
supply connections at each gate are. Minimizing lines in our schematic, we get this:

\Y

VCC

8

I\
P

4

"V..” stands for the constant voltage supplied to the collector of a bipolar junction transistor
circuit, in reference to ground. Those points in a gate circuit marked by the label "V _..” are all
connected to the same point, and that point is the positive terminal of a DC voltage source,
usually 5 volts.

As we will see in other sections of this chapter, there are quite a few different types of logic
gates, most of which have multiple input terminals for accepting more than one signal. The
output of any gate is dependent on the state of its input(s) and its logical function.

One common way to express the particular function of a gate circuit is called a truth table.
Truth tables show all combinations of input conditions in terms of logic level states (either
“high” or "low,” ”1” or ”0,” for each input terminal of the gate), along with the corresponding
output logic level, either "high” or "low.” For the inverter, or NOT, circuit just illustrated, the
truth table is very simple indeed:
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NOT gate truth table
Input bo Output

Input | Output
0 1
1 0

Truth tables for more complex gates are, of course, larger than the one shown for the NOT
gate. A gate’s truth table must have as many rows as there are possibilities for unique input
combinations. For a single-input gate like the NOT gate, there are only two possibilities, 0 and
1. For a two input gate, there are four possibilities (00, 01, 10, and 11), and thus four rows to
the corresponding truth table. For a three-input gate, there are eight possibilities (000, 001,
010, 011, 100, 101, 110, and 111), and thus a truth table with eight rows are needed. The
mathematically inclined will realize that the number of truth table rows needed for a gate is
equal to 2 raised to the power of the number of input terminals.

e REVIEW:

e In digital circuits, binary bit values of 0 and 1 are represented by voltage signals mea-
sured in reference to a common circuit point called ground. An absence of voltage repre-
sents a binary ”0” and the presence of full DC supply voltage represents a binary ”1.”

e A logic gate, or simply gate, is a special form of amplifier circuit designed to input and
output logic level voltages (voltages intended to represent binary bits). Gate circuits are
most commonly represented in a schematic by their own unique symbols rather than by
their constituent transistors and resistors.

e Just as with operational amplifiers, the power supply connections to gates are often omit-
ted in schematic diagrams for the sake of simplicity.

e A truth table is a standard way of representing the input/output relationships of a gate
circuit, listing all the possible input logic level combinations with their respective output
logic levels.

3.2 The NOT gate

The single-transistor inverter circuit illustrated earlier is actually too crude to be of practical
use as a gate. Real inverter circuits contain more than one transistor to maximize voltage gain
(so as to ensure that the final output transistor is either in full cutoff or full saturation), and
other components designed to reduce the chance of accidental damage.

Shown here is a schematic diagram for a real inverter circuit, complete with all necessary
components for efficient and reliable operation:
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Practical inverter (NOT) circuit

Input ' Q

This circuit is composed exclusively of resistors and bipolar transistors. Bear in mind that
other circuit designs are capable of performing the NOT gate function, including designs sub-
stituting field-effect transistors for bipolar (discussed later in this chapter).

Let’s analyze this circuit for the condition where the input is "high,” or in a binary ”1” state.
We can simulate this by showing the input terminal connected to V.. through a switch:

V. =5volts
VCC

R,

Vy, oV | R; R,
Q
—L\ Input\1 Q Q :
2

— LN D,
- D,A 5V Output

Q,

_ i

In this case, diode D; will be reverse-biased, and therefore not conduct any current. In fact,
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the only purpose for having D; in the circuit is to prevent transistor damage in the case of a
negative voltage being impressed on the input (a voltage that is negative, rather than positive,
with respect to ground). With no voltage between the base and emitter of transistor Q;, we
would expect no current through it, either. However, as strange as it may seem, transistor Q;
is not being used as is customary for a transistor. In reality, Q; is being used in this circuit
as nothing more than a back-to-back pair of diodes. The following schematic shows the real
function of Qq:

V=5 volts

The purpose of these diodes is to ”steer” current to or away from the base of transistor
Q., depending on the logic level of the input. Exactly how these two diodes are able to "steer”
current isn’t exactly obvious at first inspection, so a short example may be necessary for under-
standing. Suppose we had the following diode/resistor circuit, representing the base-emitter
junctions of transistors Q, and Q4 as single diodes, stripping away all other portions of the cir-
cuit so that we can concentrate on the current "steered” through the two back-to-back diodes:
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Qxe-p) Ve — 5V

With the input switch in the "up” position (connected to V..), it should be obvious that there
will be no current through the left steering diode of Q;, because there isn’t any voltage in
the switch-diode-R;-switch loop to motivate electrons to flow. However, there will be current
through the right steering diode of Q;, as well as through Q-’s base-emitter diode junction and
Q4’s base-emitter diode junction:

This tells us that in the real gate circuit, transistors Q> and Q4 will have base current,
which will turn them on to conduct collector current. The total voltage dropped between the
base of Q; (the node joining the two back-to-back steering diodes) and ground will be about 2.1
volts, equal to the combined voltage drops of three PN junctions: the right steering diode, Q>’s
base-emitter diode, and Q4’s base-emitter diode.

Now, let’s move the input switch to the "down” position and see what happens:
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SRR Qe-p) Ve — 5V

If we were to measure current in this circuit, we would find that all of the current goes
through the left steering diode of Q; and none of it through the right diode. Why is this? It
still appears as though there is a complete path for current through Q,’s diode, Q>’s diode, the
right diode of the pair, and R, so why will there be no current through that path?

Remember that PN junction diodes are very nonlinear devices: they do not even begin to
conduct current until the forward voltage applied across them reaches a certain minimum
quantity, approximately 0.7 volts for silicon and 0.3 volts for germanium. And then when
they begin to conduct current, they will not drop substantially more than 0.7 volts. When the
switch in this circuit is in the "down” position, the left diode of the steering diode pair is fully
conducting, and so it drops about 0.7 volts across it and no more.

Ve — 5V

Recall that with the switch in the "up” position (transistors Q> and Q, conducting), there
was about 2.1 volts dropped between those same two points (Q;’s base and ground), which also
happens to be the minimum voltage necessary to forward-bias three series-connected silicon
PN junctions into a state of conduction. The 0.7 volts provided by the left diode’s forward volt-
age drop is simply insufficient to allow any electron flow through the series string of the right
diode, Q>’s diode, and the R3//Q, diode parallel subcircuit, and so no electrons flow through
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that path. With no current through the bases of either transistor Q, or Q4, neither one will be
able to conduct collector current: transistors Q- and Q4 will both be in a state of cutoff.

Consequently, this circuit configuration allows 100 percent switching of Q. base current
(and therefore control over the rest of the gate circuit, including voltage at the output) by
diversion of current through the left steering diode.

In the case of our example gate circuit, the input is held "high” by the switch (connected
to V..), making the left steering diode (zero voltage dropped across it). However, the right
steering diode is conducting current through the base of Q3, through resistor R;:

V. =5volts

With base current provided, transistor Q, will be turned ”on.” More specifically, it will be
saturated by virtue of the more-than-adequate current allowed by R; through the base. With
Q. saturated, resistor R3 will be dropping enough voltage to forward-bias the base-emitter
junction of transistor Q4, thus saturating it as well:
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V. =5volts

With Q4 saturated, the output terminal will be almost directly shorted to ground, leaving
the output terminal at a voltage (in reference to ground) of almost 0 volts, or a binary ”0” ("low”)
logic level. Due to the presence of diode D5, there will not be enough voltage between the base
of Q3 and its emitter to turn it on, so it remains in cutoff.

Let’s see now what happens if we reverse the input’s logic level to a binary ”0” by actuating
the input switch:

V. =5volts

Ve |5V |RST
—Eg Input\‘-ﬁ
IR

D, ov
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Now there will be current through the left steering diode of Q; and no current through the
right steering diode. This eliminates current through the base of Q2, thus turning it off. With
Q: off, there is no longer a path for Q4 base current, so Q4 goes into cutoff as well. Q3, on the
other hand, now has sufficient voltage dropped between its base and ground to forward-bias
its base-emitter junction and saturate it, thus raising the output terminal voltage to a "high”
state. In actuality, the output voltage will be somewhere around 4 volts depending on the
degree of saturation and any load current, but still high enough to be considered a "high” (1)
logic level.

With this, our simulation of the inverter circuit is complete: a ”1” in gives a "0” out, and
vice versa.

The astute observer will note that this inverter circuit’s input will assume a "high” state of
left floating (not connected to either V.. or ground). With the input terminal left unconnected,
there will be no current through the left steering diode of Q1, leaving all of R;’s current to go
through Q:’s base, thus saturating Q> and driving the circuit output to a "low” state:

V. = 5volts

Input
(floating)

The tendency for such a circuit to assume a high input state if left floating is one shared
by all gate circuits based on this type of design, known as Transistor-to-Transistor Logic, or
TTL. This characteristic may be taken advantage of in simplifying the design of a gate’s output
circuitry, knowing that the outputs of gates typically drive the inputs of other gates. If the
input of a TTL gate circuit assumes a high state when floating, then the output of any gate
driving a TTL input need only provide a path to ground for a low state and be floating for
a high state. This concept may require further elaboration for full understanding, so I will
explore it in detail here.

A gate circuit as we have just analyzed has the ability to handle output current in two
directions: in and out. Technically, this is known as sourcing and sinking current, respectively.
When the gate output is high, there is continuity from the output terminal to V.. through the
top output transistor (Q3), allowing electrons to flow from ground, through a load, into the
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gate’s output terminal, through the emitter of Qs3, and eventually up to the V... power terminal
(positive side of the DC power supply):

V. =5volts

=
i

D> Output

R, % %Q:/'r%mad

N

Inverter gate sourcing current

To simplify this concept, we may show the output of a gate circuit as being a double-throw
switch, capable of connecting the output terminal either to V.. or ground, depending on its
state. For a gate outputting a "high” logic level, the combination of Q3 saturated and Q4 cutoff
is analogous to a double-throw switch in the "V ..” position, providing a path for current through
a grounded load:

Simplified gate circuit sourcing current

Vo

(]

Input _Output

T Load

L(J—>'

Please note that this two-position switch shown inside the gate symbol is representative of
transistors Q3 and Q4 alternately connecting the output terminal to V.. or ground, not of the
switch previously shown sending an input signal to the gate!

Conversely, when a gate circuit is outputting a "low” logic level to a load, it is analogous
to the double-throw switch being set in the "ground” position. Current will then be going the
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other way if the load resistance connects to V..: from ground, through the emitter of Q4, out
the output terminal, through the load resistance, and back to V... In this condition, the gate is
said to be sinking current:

V.. =5volts

Load

Inverter gate sinking current

Simplified gate circuit sinking current

VCC

T Load

Input_ |

The combination of Q3 and Q4 working as a "push-pull” transistor pair (otherwise known
as a totem pole output) has the ability to either source current (draw in current to V..) or sink
current (output current from ground) to a load. However, a standard TTL gate input never
needs current to be sourced, only sunk. That is, since a TTL gate input naturally assumes a
high state if left floating, any gate output driving a TTL input need only sink current to provide
a ”0” or "low” input, and need not source current to provide a ”1” or a "high” logic level at the
input of the receiving gate:
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A direct connection to V.. is not
Vv necessary to drive the TTL gate

—— input high!
Input T _TTL
R gate

An output that "floats" when high
—= s sufficient.

Input_ | 3, LTTL _
_1' gate
VCC VCC

— T—TEL

Input
_ " gate

Y

— Anygate drivinga TTL

input must sink some
current in the low state.

This means we have the option of simplifying the output stage of a gate circuit so as to
eliminate Q3 altogether. The result is known as an open-collector output:
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Inverter circuit with open-collector output

VCC

Input

D, Output

Rs

L

To designate open-collector output circuitry within a standard gate symbol, a special marker
is used. Shown here is the symbol for an inverter gate with open-collector output:

Inverter with open-
collector output

&>

Please keep in mind that the "high” default condition of a floating gate input is only true
for TTL circuitry, and not necessarily for other types, especially for logic gates constructed of
field-effect transistors.

e REVIEW:

e An inverter, or NOT, gate is one that outputs the opposite state as what is input. That is,
a "low” input (0) gives a "high” output (1), and vice versa.

e Gate circuits constructed of resistors and bipolar transistors as illustrated in this section
are called TTL. TTL is an acronym standing for Transistor-to-Transistor Logic. There are
other design methodologies used in gate circuits, some which use field-effect transistors
rather than bipolar transistors.

e A gate is said to be sourcing current when it provides a path for current between the
output terminal and the positive side of the DC power supply (V..). In other words, it is
connecting the output terminal to the power source (+V).

e A gateis said to be sinking current when it provides a path for current between the output
terminal and ground. In other words, it is grounding (sinking) the output terminal.
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e Gate circuits with totem pole output stages are able to both source and sink current. Gate
circuits with open-collector output stages are only able to sink current, and not source
current. Open-collector gates are practical when used to drive TTL gate inputs because
TTL inputs don’t require current sourcing.

3.3 The ”buffer” gate

If we were to connect two inverter gates together so that the output of one fed into the input
of another, the two inversion functions would ”cancel” each other out so that there would be no
inversion from input to final output:

Double inversion

Logic state re-inverted
to original status

oot

Oinverted intoa 1

While this may seem like a pointless thing to do, it does have practical application. Remem-
ber that gate circuits are signal amplifiers, regardless of what logic function they may perform.
A weak signal source (one that is not capable of sourcing or sinking very much current to a
load) may be boosted by means of two inverters like the pair shown in the previous illustra-
tion. The logic level is unchanged, but the full current-sourcing or -sinking capabilities of the
final inverter are available to drive a load resistance if needed.

For this purpose, a special logic gate called a buffer is manufactured to perform the same
function as two inverters. Its symbol is simply a triangle, with no inverting "bubble” on the
output terminal:

"Buffer" gate

Input4|> Output

Input | Output
0 0
1 1

The internal schematic diagram for a typical open-collector buffer is not much different
from that of a simple inverter: only one more common-emitter transistor stage is added to
re-invert the output signal.
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Buffer circuit with open-collector output

Ve
|
R, R,
2=
Q

Input > Q '\\ 2 Output

Dj_ Q4

1 Qs
R %

—~— |nverter — —<—Inverter —

Let’s analyze this circuit for two conditions: an input logic level of ”1” and an input logic
level of ”0.” First, a high” (1) input:

Vr:
Ve Ry R,
T =
Input 0
_If? . Q 2 Output
- Dl Q4
Qs
RS
L ;

As before with the inverter circuit, the “high” input causes no conduction through the left
steering diode of Q; (emitter-to-base PN junction). All of R;’s current goes through the base of
transistor Q», saturating it:
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ﬁ

N

1 Output

T
Ve Ry /[\ R,
R%T
Input <— TQ
Ny

Q,

Having Q, saturated causes Q3 to be saturated as well, resulting in very little voltage
dropped between the base and emitter of the final output transistor Q4. Thus, Q4 will be in
cutoff mode, conducting no current. The output terminal will be floating (neither connected to
ground nor V..), and this will be equivalent to a "high” state on the input of the next TTL gate
that this one feeds in to. Thus, a "high” input gives a "high” output.

With a "low” input signal (input terminal grounded), the analysis looks something like this:

VCC
|
Ve R /[\ R,
Input R%T
T Joe
e : 2

D
' Qs&

Output

Q,

Rs

ne

All of Ry’s current is now diverted through the input switch, thus eliminating base current
through Q.. This forces transistor Qs into cutoff so that no base current goes through Qs
either. With Q3 cutoff as well, Q4 is will be saturated by the current through resistor R4, thus
connecting the output terminal to ground, making it a "low” logic level. Thus, a "low” input



48 CHAPTER 3. LOGIC GATES

gives a "low” output.

The schematic diagram for a buffer circuit with totem pole output transistors is a bit more
complex, but the basic principles, and certainly the truth table, are the same as for the open-
collector circuit:

Buffer circuit with totem pole output

Input - Ql

—~— |nverter —> —<+—|nverter —>

e REVIEW:

e Two inverter, or NOT, gates connected in "series” so as to invert, then re-invert, a binary
bit perform the function of a buffer. Buffer gates merely serve the purpose of signal
amplification: taking a "weak” signal source that isn’t capable of sourcing or sinking
much current, and boosting the current capacity of the signal so as to be able to drive a
load.

e Buffer circuits are symbolized by a triangle symbol with no inverter "bubble.”

e Buffers, like inverters, may be made in open-collector output or totem pole output forms.

3.4 Multiple-input gates

Inverters and buffers exhaust the possibilities for single-input gate circuits. What more can
be done with a single logic signal but to buffer it or invert it? To explore more logic gate
possibilities, we must add more input terminals to the circuit(s).

Adding more input terminals to a logic gate increases the number of input state possibil-
ities. With a single-input gate such as the inverter or buffer, there can only be two possible
input states: either the input is "high” (1) or it is "low” (0). As was mentioned previously in
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this chapter, a two input gate has four possibilities (00, 01, 10, and 11). A three-input gate has
eight possibilities (000, 001, 010, 011, 100, 101, 110, and 111) for input states. The number of
possible input states is equal to two to the power of the number of inputs:

Number of possible input states = 2"

Where,
n = Number of inputs

This increase in the number of possible input states obviously allows for more complex gate
behavior. Now, instead of merely inverting or amplifying (buffering) a single "high” or "low”
logic level, the output of the gate will be determined by whatever combination of 1’s and 0’s is
present at the input terminals.

Since so many combinations are possible with just a few input terminals, there are many
different types of multiple-input gates, unlike single-input gates which can only be inverters
or buffers. Each basic gate type will be presented in this section, showing its standard symbol,
truth table, and practical operation. The actual TTL circuitry of these different gates will be
explored in subsequent sections.

3.4.1 The AND gate

One of the easiest multiple-input gates to understand is the AND gate, so-called because the
output of this gate will be "high” (1) if and only if all inputs (first input and the second input
and . . .) are "high” (1). If any input(s) are "low” (0), the output is guaranteed to be in a "low”
state as well.

2-input AND gate 3-input AND gate
Input
Input,— A—
P } Output InpUtB_} Output
Inputy— Input, ™

In case you might have been wondering, AND gates are made with more than three inputs,
but this is less common than the simple two-input variety.

A two-input AND gate’s truth table looks like this:
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2-input AND gate

InDUtA_} Output
Inputg—

A| B| Output
0|0 0
01 0
1|0 0
111 1

What this truth table means in practical terms is shown in the following sequence of illus-
trations, with the 2-input AND gate subjected to all possibilities of input logic levels. An LED
(Light-Emitting Diode) provides visual indication of the output logic level:

Output
Zr

Inputg

Input, = 0
Inputg = 0
Output = 0 (no light)

Output

Inputg

Input, = 1
Inputg = 0
Output = 0 (no light)
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Output
Zn

Inputg

Input, = 0
Inputg = 1
Output = 0 (no light)

Inputg

Input, = 1
Inputg = 1
Output = 1 (light!)

It is only with all inputs raised to "high” logic levels that the AND gate’s output goes "high,”
thus energizing the LED for only one out of the four input combination states.

3.4.2 The NAND gate

A variation on the idea of the AND gate is called the NAND gate. The word "NAND” is a
verbal contraction of the words NOT and AND. Essentially, a NAND gate behaves the same as
an AND gate with a NOT (inverter) gate connected to the output terminal. To symbolize this
output signal inversion, the NAND gate symbol has a bubble on the output line. The truth
table for a NAND gate is as one might expect, exactly opposite as that of an AND gate:
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2-input NAND gate

InputA—} Output
Inputg—

A| B | Output
0|0 1
01 1
1|0 1
1|1 0

Equivalent gate circuit
Input,—
Inputg—
As with AND gates, NAND gates are made with more than two inputs. In such cases, the

same general principle applies: the output will be "low” (0) if and only if all inputs are “high”
(1). If any input is "low” (0), the output will go "high” (1).

3.4.3 The OR gate

Our next gate to investigate is the OR gate, so-called because the output of this gate will be
“high” (1) if any of the inputs (first input or the second input or . . .) are "high” (1). The output
of an OR gate goes "low” (0) if and only if all inputs are "low” (0).

2-input OR gate 3-input OR gate

Input,

Input

P A:Z>7 Output Input53>— Output
Inputg Input,

A two-input OR gate’s truth table looks like this:
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2-input OR gate

|npUtAj>— Output
Inputg

A| B| Output
0|0 0
01 1
1|0 1
111 1

The following sequence of illustrations demonstrates the OR gate’s function, with the 2-
inputs experiencing all possible logic levels. An LED (Light-Emitting Diode) provides visual
indication of the gate’s output logic level:

Output
e

Inputg

Input, = 0
Inputg = 0
Output = 0 (no light)

Input, = 1

Inputg = 0
Output = 1 (light!)
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Input, = 0

Inputg = 1
Output = 1 (light!)

Input, = 1

Inputg = 1
Output = 1 (light!)

A condition of any input being raised to a "high” logic level makes the OR gate’s output go
“high,” thus energizing the LED for three out of the four input combination states.

3.4.4 The NOR gate

As you might have suspected, the NOR gate is an OR gate with its output inverted, just like a
NAND gate is an AND gate with an inverted output.
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2-input NOR gate

InputA:2>07 Output
Inputg

A| B| Output
0|0 1
01 0
1|0 0
1|1 0

Equivalent gate circuit
Input
P Am Output
Inputg

NOR gates, like all the other multiple-input gates seen thus far, can be manufactured with
more than two inputs. Still, the same logical principle applies: the output goes "low” (0) if any
of the inputs are made "high” (1). The output is "high” (1) only when all inputs are "low” (0).

3.4.5 The Negative-AND gate

A Negative-AND gate functions the same as an AND gate with all its inputs inverted (con-
nected through NOT gates). In keeping with standard gate symbol convention, these inverted
inputs are signified by bubbles. Contrary to most peoples’ first instinct, the logical behavior of
a Negative-AND gate is not the same as a NAND gate. Its truth table, actually, is identical to
a NOR gate:
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2-input Negative-AND gate

Input,—9 >
Output
Inputg—-9

A| B | Output
0|0 1
01 0
1|0 0
1|1 0

Equivalent gate circuits

} Output
InputBM
InputA:z>of Output
Inputg

Input,

3.4.6 The Negative-OR gate

Following the same pattern, a Negative-OR gate functions the same as an OR gate with all its
inputs inverted. In keeping with standard gate symbol convention, these inverted inputs are
signified by bubbles. The behavior and truth table of a Negative-OR gate is the same as for a
NAND gate:
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2-input Negative-OR gate

InputAj>, Output
Inputg

A| B | Output
0|0 1
01 1
1|0 1
1|1 0

Equivalent gate circuits

Input,
Output
Inputg

InputA—} Output
Inputg—

3.4.7 The Exclusive-OR gate

The last six gate types are all fairly direct variations on three basic functions: AND, OR, and
NOT. The Exclusive-OR gate, however, is something quite different.

Exclusive-OR gates output a "high” (1) logic level if the inputs are at different logic levels,
either 0 and 1 or 1 and 0. Conversely, they output a "low” (0) logic level if the inputs are at
the same logic levels. The Exclusive-OR (sometimes called XOR) gate has both a symbol and a
truth table pattern that is unique:
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Exclusive-OR gate

InputAjD output
Inputg

A| B| Output
0|0 0
01 1
1|0 1
1|1 0

There are equivalent circuits for an Exclusive-OR gate made up of AND, OR, and NOT
gates, just as there were for NAND, NOR, and the negative-input gates. A rather direct ap-
proach to simulating an Exclusive-OR gate is to start with a regular OR gate, then add addi-
tional gates to inhibit the output from going "high” (1) when both inputs are "high” (1):

Exclusive-OR equivalent circuit

Input, } Output

Inputg

A| B | Output
0|0 0
01 1
1|0 1
1|1 0

In this circuit, the final AND gate acts as a buffer for the output of the OR gate whenever
the NAND gate’s output is high, which it is for the first three input state combinations (00, 01,
and 10). However, when both inputs are "high” (1), the NAND gate outputs a "low” (0) logic
level, which forces the final AND gate to produce a "low” (0) output.

Another equivalent circuit for the Exclusive-OR gate uses a strategy of two AND gates with
inverters, set up to generate "high” (1) outputs for input conditions 01 and 10. A final OR gate
then allows either of the AND gates’ ”high” outputs to create a final "high” output:
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Exclusive-OR equivalent circuit

>
=
-

Input, Output
Inputg

A | B| Output

0|0 0

0|1 1

1|0 1

1|1 0

Exclusive-OR gates are very useful for circuits where two or more binary numbers are to be
compared bit-for-bit, and also for error detection (parity check) and code conversion (binary to
Grey and vice versa).

3.4.8 The Exclusive-NOR gate

Finally, our last gate for analysis is the Exclusive-NOR gate, otherwise known as the XNOR
gate. It is equivalent to an Exclusive-OR gate with an inverted output. The truth table for this
gate is exactly opposite as for the Exclusive-OR gate:
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Exclusive-NOR gate

InputAjD Output
Inputg

A| B | Output
0|0 1
01 0
1|0 0
1|1 1

Equivalent gate circuit

Input
PU% )W Output
Inputg
As indicated by the truth table, the purpose of an Exclusive-NOR gate is to output a "high”
(1) logic level whenever both inputs are at the same logic levels (either 00 or 11).
e REVIEW:

e Rule for an AND gate: output is “high” only if first input and second input are both "high.”
e Rule for an OR gate: output is “high” if input A or input B are "high.”

Rule for a NAND gate: output is not "high” if both the first input and the second input
are "high.”

Rule for a NOR gate: output is not "high” if either the first input or the second input are
”high‘”

e A Negative-AND gate behaves like a NOR gate.
e A Negative-OR gate behaves like a NAND gate.
e Rule for an Exclusive-OR gate: output is “high” if the input logic levels are different.

e Rule for an Exclusive-NOR gate: output is “high” if the input logic levels are the same.

3.5 TTL NAND and AND gates

Suppose we altered our basic open-collector inverter circuit, adding a second input terminal
just like the first:
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A two-input inverter circuit

Input,

Inputg—
Output

This schematic illustrates a real circuit, but it isn’t called a "two-input inverter.” Through
analysis we will discover what this circuit’s logic function is and correspondingly what it should
be designated as.

Just as in the case of the inverter and buffer, the "steering” diode cluster marked "Q;” is
actually formed like a transistor, even though it isn’t used in any amplifying capacity. Unfor-
tunately, a simple NPN transistor structure is inadequate to simulate the three PN junctions
necessary in this diode network, so a different transistor (and symbol) is needed. This transis-
tor has one collector, one base, and fwo emitters, and in the circuit it looks like this:

Veo
R R,
Input, Q Q,
Inputg———
Output
D,A AD, Qs
Ry
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In the single-input (inverter) circuit, grounding the input resulted in an output that as-
sumed the “high” (1) state. In the case of the open-collector output configuration, this “high”
state was simply "floating.” Allowing the input to float (or be connected to V..) resulted in the
output becoming grounded, which is the "low” or 0 state. Thus, a 1 in resulted in a 0 out, and
vice versa.

Since this circuit bears so much resemblance to the simple inverter circuit, the only differ-
ence being a second input terminal connected in the same way to the base of transistor Q2, we
can say that each of the inputs will have the same effect on the output. Namely, if either of the
inputs are grounded, transistor Q- will be forced into a condition of cutoff, thus turning Qs off
and floating the output (output goes “high”). The following series of illustrations shows this for
three input states (00, 01, and 10):

VCC
RZ
P Q, Cutoff
"Q," 1
@ Output
Q; Cutoff
RS
=
Input, = 0
Inputg = 0
Output = 1
Ve
RZ
Pl Q, Cutoff
"Q." 1
@ Output
Qs Cutoff
R3
£
Input, = 0
Inputg = 1

Output = 1
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Ve
RZ
g Q, Cutoff
"O," 1
@ Output
Qs Cutoff
RS
—=—
Input, = 1
Inputg = 0
Output = 1

In any case where there is a grounded ("low”) input, the output is guaranteed to be floating
("high”). Conversely, the only time the output will ever go "low” is if transistor Q3 turns on,
which means transistor Q> must be turned on (saturated), which means neither input can
be diverting R; current away from the base of @Q;. The only condition that will satisfy this
requirement is when both inputs are "high” (1):

Ve
R,
Pl Q, Saturation
" " 0
@ Output
Q; Saturation
Ry
=
Input, = 1
Inputg = 1
Output = 0

Collecting and tabulating these results into a truth table, we see that the pattern matches
that of the NAND gate:
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NAND gate
Input,—
P }Output
Inputg—

A| B| Output

0|0 1

01 1

1|0 1

111 0

In the earlier section on NAND gates, this type of gate was created by taking an AND gate
and increasing its complexity by adding an inverter (NOT gate) to the output. However, when
we examine this circuit, we see that the NAND function is actually the simplest, most natural
mode of operation for this TTL design. To create an AND function using TTL circuitry, we need
to increase the complexity of this circuit by adding an inverter stage to the output, just like we
had to add an additional transistor stage to the TTL inverter circuit to turn it into a buffer:

AND gate with open-collector output

VCC
|

N Output
Q4

- Qs
R %

—— NAND gate —> —<—Inverter —>

The truth table and equivalent gate circuit (an inverted-output NAND gate) are shown
here:
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AND gate
Input,—
Pt }Output
Inputg—

A| B| Output

00 0

01 0

1|0 0

1|1 1

Equivalent circuit

Input,—
puty j}—[>o— Output
Inputg—
Of course, both NAND and AND gate circuits may be designed with totem-pole output

stages rather than open-collector. I am opting to show the open-collector versions for the sake
of simplicity.

e REVIEW:

e A TTL NAND gate can be made by taking a TTL inverter circuit and adding another
input.

e An AND gate may be created by adding an inverter stage to the output of the NAND gate
circuit.

3.6 TTL NOR and OR gates

Let’s examine the following TTL circuit and analyze its operation:
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Input, Q,

Output

Input,——P—1—" Q2

Qs
D,A AD,

Transistors Q; and Q- are both arranged in the same manner that we’ve seen for transistor
Q; in all the other TTL circuits. Rather than functioning as amplifiers, Q; and Q. are both
being used as two-diode "steering” networks. We may replace Q; and Q; with diode sets to
help illustrate:

Output

Qs

If input A is left floating (or connected to V..), current will go through the base of transistor
Q3, saturating it. If input A is grounded, that current is diverted away from Q3’s base through
the left steering diode of ”Q;,” thus forcing Q3 into cutoff. The same can be said for input B and
transistor Q4: the logic level of input B determines Q4’s conduction: either saturated or cutoff.

Notice how transistors Q3 and Q4 are paralleled at their collector and emitter terminals.
In essence, these two transistors are acting as paralleled switches, allowing current through
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resistors Rz and R4 according to the logic levels of inputs A and B. If any input is at a “high” (1)
level, then at least one of the two transistors (Q3 and/or Q4) will be saturated, allowing current
through resistors R; and R4, and turning on the final output transistor Q5 for a "low” (0) logic
level output. The only way the output of this circuit can ever assume a "high” (1) state is if
both Q3 and Q4 are cutoff, which means both inputs would have to be grounded, or "low” (0).

This circuit’s truth table, then, is equivalent to that of the NOR gate:

NOR gate
Input
P A:Z>% Output
Inputg

A| B| Output

0|0 1

01 0

1|0 0

1|1 0

In order to turn this NOR gate circuit into an OR gate, we would have to invert the output
logic level with another transistor stage, just like we did with the NAND-to-AND gate example:

OR gate with open-collector output

Output
Qs

~<— NOR gate —>—<—Inverter —>

The truth table and equivalent gate circuit (an inverted-output NOR gate) are shown here:
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OR gate

Input
P AD Output
Inputg

A| B | Output

0|0 0

01 1

1|0 1

1|1 1

Equivalent circuit

InputAw Output
Inputg

Of course, totem-pole output stages are also possible in both NOR and OR TTL logic circuits.
e REVIEW:

e An OR gate may be created by adding an inverter stage to the output of the NOR gate
circuit.

3.7 CMOS gate circuitry

Up until this point, our analysis of transistor logic circuits has been limited to the TTL design
paradigm, whereby bipolar transistors are used, and the general strategy of floating inputs
being equivalent to “high” (connected to V..) inputs — and correspondingly, the allowance of
“open-collector” output stages — is maintained. This, however, is not the only way we can build
logic gates.

Field-effect transistors, particularly the insulated-gate variety, may be used in the design
of gate circuits. Being voltage-controlled rather than current-controlled devices, IGFETSs tend
to allow very simple circuit designs. Take for instance, the following inverter circuit built using
P- and N-channel IGFETs:
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Inverter circuit using IGFETs
vdad (+5volts)
|_
_| —
|_
Input Output
|_
||
|_

Notice the "V 4,” label on the positive power supply terminal. This label follows the same
convention as "V..” in TTL circuits: it stands for the constant voltage applied to the drain of a
field effect transistor, in reference to ground.

Let’s connect this gate circuit to a power source and input switch, and examine its opera-
tion. Please note that these IGFET transistors are E-type (Enhancement-mode), and so are
normally-off devices. It takes an applied voltage between gate and drain (actually, between
gate and substrate) of the correct polarity to bias them on.

+
|_
- Saturated
. — .
— _Input] | Output  —
+° p—

+

/ J: Cutoff
] .

Input = "low" (0)
Output = "high" (1)

The upper transistor is a P-channel IGFET. When the channel (substrate) is made more
positive than the gate (gate negative in reference to the substrate), the channel is enhanced and
current is allowed between source and drain. So, in the above illustration, the top transistor is
turned on.

The lower transistor, having zero voltage between gate and substrate (source), is in its
normal mode: off. Thus, the action of these two transistors are such that the output terminal
of the gate circuit has a solid connection to V4 and a very high resistance connection to ground.
This makes the output “high” (1) for the "low” (0) state of the input.

Next, we’ll move the input switch to its other position and see what happens:
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.
|~ cutorf

—* -

74 s
J: Saturated

I+

Input = "high" (1)
Output = "low" (0)

Now the lower transistor (N-channel) is saturated because it has sufficient voltage of the
correct polarity applied between gate and substrate (channel) to turn it on (positive on gate,
negative on the channel). The upper transistor, having zero voltage applied between its gate
and substrate, is in its normal mode: off. Thus, the output of this gate circuit is now “low” (0).
Clearly, this circuit exhibits the behavior of an inverter, or NOT gate.

Using field-effect transistors instead of bipolar transistors has greatly simplified the design
of the inverter gate. Note that the output of this gate never floats as is the case with the
simplest TTL circuit: it has a natural "totem-pole” configuration, capable of both sourcing and
sinking load current. Key to this gate circuit’s elegant design is the complementary use of both
P- and N-channel IGFETs. Since IGFETSs are more commonly known as MOSFETs (Metal-
Oxide-Semiconductor Field Effect Transistor), and this circuit uses both P- and N-channel
transistors together, the general classification given to gate circuits like this one is CMOS:
Complementary Metal Oxide Semiconductor.

CMOS circuits aren’t plagued by the inherent nonlinearities of the field-effect transistors,
because as digital circuits their transistors always operate in either the saturated or cutoff
modes and never in the active mode. Their inputs are, however, sensitive to high voltages
generated by electrostatic (static electricity) sources, and may even be activated into "high” (1)
or "low” (0) states by spurious voltage sources if left floating. For this reason, it is inadvisable
to allow a CMOS logic gate input to float under any circumstances. Please note that this is
very different from the behavior of a TTL gate where a floating input was safely interpreted as
a "high” (1) logic level.

This may cause a problem if the input to a CMOS logic gate is driven by a single-throw
switch, where one state has the input solidly connected to either V;; or ground and the other
state has the input floating (not connected to anything):
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CMOS gate

Input

When switch is closed, the gate sees a
definite "low" (0) input. However, when
switch is open, the input logic level will

be uncertain because it's floating.

Also, this problem arises if a CMOS gate input is being driven by an open-collector TTL
gate. Because such a TTL gate’s output floats when it goes “high” (1), the CMOS gate input
will be left in an uncertain state:

Open-collector
"FTL gate CMOS gate

Vcc Vdd

.

Input = Output Input

il

When the open-collector TTL gate’s output
is "high" (1), the CMOS gate’s input will be
left floating and in an uncertain logic state.

Fortunately, there is an easy solution to this dilemma, one that is used frequently in CMOS
logic circuitry. Whenever a single-throw switch (or any other sort of gate output incapable of
both sourcing and sinking current) is being used to drive a CMOS input, a resistor connected to
either V44 or ground may be used to provide a stable logic level for the state in which the driving
device’s output is floating. This resistor’s value is not critical: 10 k(2 is usually sufficient. When
used to provide a "high” (1) logic level in the event of a floating signal source, this resistor is
known as a pullup resistor:
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Vdd

R CMOS gate

pullup

= Outpt

When switch is closed, the gate sees a
definite "low" (0) input. When the switch
is open, Ry, Will provide the connection
to Vdd needed to secure a reliable "high”
logic level for the CMOS gate input.

When such a resistor is used to provide a "low” (0) logic level in the event of a floating

signal source, it is known as a pulldown resistor. Again, the value for a pulldown resistor is
not critical:

CMOS gate
Vdd

Input
Output

R

pulldow

When switcﬁ is closed, the gate sees a
definite "high" (1) input. When the switch

is open, Ry igoun Will provide the connection
to ground needed to secure a reliable "low"
logic level for the CMOS gate input.

Because open-collector TTL outputs always sink, never source, current, pullup resistors are
necessary when interfacing such an output to a CMOS gate input:

Open-collector
TTL gate Vi CMOS gate

Vcc Vdd
Rpullup —|_

I R W

| 1
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Although the CMOS gates used in the preceding examples were all inverters (single-input),
the same principle of pullup and pulldown resistors applies to multiple-input CMOS gates. Of
course, a separate pullup or pulldown resistor will be required for each gate input:

Pullup resistors for a 3-input
CMOS AND gate

Vdd

Input,

Inputg
v
Ian,HC_I—L}

This brings us to the next question: how do we design multiple-input CMOS gates such as
AND, NAND, OR, and NOR? Not surprisingly, the answer(s) to this question reveal a simplicity
of design much like that of the CMOS inverter over its TTL equivalent.

For example, here is the schematic diagram for a CMOS NAND gate:

CMOS NAND gate
vad
Ql '_I:IZ
—
=5

Y

Output
Qs

TFI1

Input,

Q,

RN

Inputg

Notice how transistors Q; and Q3 resemble the series-connected complementary pair from
the inverter circuit. Both are controlled by the same input signal (input A), the upper transistor
turning off and the lower transistor turning on when the input is “high” (1), and vice versa.
Notice also how transistors Q. and Q4 are similarly controlled by the same input signal (input
B), and how they will also exhibit the same on/off behavior for the same input logic levels. The
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upper transistors of both pairs (Q; and Q3) have their source and drain terminals paralleled,
while the lower transistors (Qs and Q) are series-connected. What this means is that the
output will go "high” (1) if either top transistor saturates, and will go "low” (0) only if both
lower transistors saturate. The following sequence of illustrations shows the behavior of this
NAND gate for all four possibilities of input logic levels (00, 01, 10, and 11):

Vdd
Q'l_’—l::2

-
on | on

1
vad '_ Output
—4 Input, | Qs
—
0 OFF
0 Qs -
Inputg OFF

1<

dd

Q
=li=)
uca

1
Output

0 OFF

Q'].__|:2
]

OFF ON

1
vad Output

it | %]
—
1
0

Inputg OFF
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&

Ql 2
] :_Li ]
OF'F»—, OFF

0
vad o ] Output
Input, 3
et | | ~
1 ON
1 Q4 -
Inputg ON

As with the TTL NAND gate, the CMOS NAND gate circuit may be used as the starting
point for the creation of an AND gate. All that needs to be added is another stage of transistors
to invert the output signal:

CMOS AND gate

Vad
Q '_|::2
|_
B
— —
| [ -
'_
> Qs t— Output
— —
Q3 ~— |
Input, — —
|_
Qs |1
Inputg —

—— NAND gate ——=<—Inverter —>

A CMOS NOR gate circuit uses four MOSFETSs just like the NAND gate, except that its
transistors are differently arranged. Instead of two paralleled sourcing (upper) transistors
connected to V4, and two series-connected sinking (lower) transistors connected to ground, the
NOR gate uses two series-connected sourcing transistors and two parallel-connected sinking
transistors like this:
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CMOS NOR gate
Vdd

Q

T

Q;

Output
Qs | Q
Ry

Input,__| ':f L

Inputg

As with the NAND gate, transistors Q; and Q3 work as a complementary pair, as do tran-
sistors Q2 and Q4. Each pair is controlled by a single input signal. If either input A or input B
are “high” (1), at least one of the lower transistors (Q3 or Q) will be saturated, thus making
the output “low” (0). Only in the event of both inputs being "low” (0) will both lower transistors
be in cutoff mode and both upper transistors be saturated, the conditions necessary for the
output to go “high” (1). This behavior, of course, defines the NOR logic function.

The OR function may be built up from the basic NOR gate with the addition of an inverter
stage on the output:
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CMOS OR gate

Vad

Q

Qs

|_
=

TF IR

Q;]» Output
Qs | Q

e,
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Inputg T

<—NOR gate —»<—Inverter —

Since it appears that any gate possible to construct using TTL technology can be duplicated
in CMOS, why do these two "families” of logic design still coexist? The answer is that both TTL
and CMOS have their own unique advantages.

First and foremost on the list of comparisons between TTL and CMOS is the issue of power
consumption. In this measure of performance, CMOS is the unchallenged victor. Because
the complementary P- and N-channel MOSFET pairs of a CMOS gate circuit are (ideally)
never conducting at the same time, there is little or no current drawn by the circuit from the
V44 power supply except for what current is necessary to source current to a load. TTL, on
the other hand, cannot function without some current drawn at all times, due to the biasing
requirements of the bipolar transistors from which it is made.

There is a caveat to this advantage, though. While the power dissipation of a TTL gate
remains rather constant regardless of its operating state(s), a CMOS gate dissipates more
power as the frequency of its input signal(s) rises. If a CMOS gate is operated in a static
(unchanging) condition, it dissipates zero power (ideally). However, CMOS gate circuits draw
transient current during every output state switch from "low” to “high” and vice versa. So,
the more often a CMOS gate switches modes, the more often it will draw current from the V44
supply, hence greater power dissipation at greater frequencies.

A CMOS gate also draws much less current from a driving gate output than a TTL gate
because MOSFETSs are voltage-controlled, not current-controlled, devices. This means that
one gate can drive many more CMOS inputs than TTL inputs. The measure of how many gate
inputs a single gate output can drive is called fanout.

Another advantage that CMOS gate designs enjoy over TTL is a much wider allowable
range of power supply voltages. Whereas TTL gates are restricted to power supply (V..) volt-
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ages between 4.75 and 5.25 volts, CMOS gates are typically able to operate on any voltage
between 3 and 15 volts! The reason behind this disparity in power supply voltages is the
respective bias requirements of MOSFET versus bipolar junction transistors. MOSFETs are
controlled exclusively by gate voltage (with respect to substrate), whereas BJTs are current-
controlled devices. TTL gate circuit resistances are precisely calculated for proper bias currents
assuming a 5 volt regulated power supply. Any significant variations in that power supply volt-
age will result in the transistor bias currents being incorrect, which then results in unreliable
(unpredictable) operation. The only effect that variations in power supply voltage have on a
CMOS gate is the voltage definition of a ”high” (1) state. For a CMOS gate operating at 15 volts
of power supply voltage (V44), an input signal must be close to 15 volts in order to be considered
“high” (1). The voltage threshold for a ”low” (0) signal remains the same: near 0 volts.

One decided disadvantage of CMOS is slow speed, as compared to TTL. The input capaci-
tances of a CMOS gate are much, much greater than that of a comparable TTL gate — owing
to the use of MOSFETSs rather than BJTs — and so a CMOS gate will be slower to respond to a
signal transition (low-to-high or vice versa) than a TTL gate, all other factors being equal. The
RC time constant formed by circuit resistances and the input capacitance of the gate tend to
impede the fast rise- and fall-times of a digital logic level, thereby degrading high-frequency
performance.

A strategy for minimizing this inherent disadvantage of CMOS gate circuitry is to "buffer”
the output signal with additional transistor stages, to increase the overall voltage gain of the
device. This provides a faster-transitioning output voltage (high-to-low or low-to-high) for an
input voltage slowly changing from one logic state to another. Consider this example, of an
“unbuffered” NOR gate versus a "buffered,” or B-series, NOR gate:
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"Unbuffered" NOR gate

vdd
Q
—
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Q,
1 Output
Q Q
L
|
Input, | — F \_‘
Inputg

"B-series" (buffered) NOR gate
Vdd

Q
I

Output

L]
[F1_ J41

3
—
[
Input, — F: Ll
[

Inputg

In essence, the B-series design enhancement adds two inverters to the output of a simple
NOR circuit. This serves no purpose as far as digital logic is concerned, since two cascaded
inverters simply cancel:
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l

(same as)

l

l

(same as)

l
0o

However, adding these inverter stages to the circuit does serve the purpose of increasing
overall voltage gain, making the output more sensitive to changes in input state, working to
overcome the inherent slowness caused by CMOS gate input capacitance.

REVIEW:

CMOS logic gates are made of IGFET (MOSFET) transistors rather than bipolar junction
transistors.

CMOS gate inputs are sensitive to static electricity. They may be damaged by high volt-
ages, and they may assume any logic level if left floating.

e Pullup and pulldown resistors are used to prevent a CMOS gate input from floating if

being driven by a signal source capable only of sourcing or sinking current.

CMOS gates dissipate far less power than equivalent TTL gates, but their power dissi-
pation increases with signal frequency, whereas the power dissipation of a TTL gate is
approximately constant over a wide range of operating conditions.

CMOS gate inputs draw far less current than TTL inputs, because MOSFETs are voltage-
controlled, not current-controlled, devices.

CMOS gates are able to operate on a much wider range of power supply voltages than
TTL: typically 3 to 15 volts versus 4.75 to 5.25 volts for TTL.

CMOS gates tend to have a much lower maximum operating frequency than TTL gates
due to input capacitances caused by the MOSFET gates.
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e B-series CMOS gates have "buffered” outputs to increase voltage gain from input to out-
put, resulting in faster output response to input signal changes. This helps overcome the
inherent slowness of CMOS gates due to MOSFET input capacitance and the RC time
constant thereby engendered.

3.8 Special-output gates

It is sometimes desirable to have a logic gate that provides both inverted and non-inverted
outputs. For example, a single-input gate that is both a buffer and an inverter, with a sep-
arate output terminal for each function. Or, a two-input gate that provides both the AND
and the NAND functions in a single circuit. Such gates do exist and they are referred to as
complementary output gates.

The general symbology for such a gate is the basic gate figure with a bar and two output
lines protruding from it. An array of complementary gate symbols is shown in the following
illustration:

Complementary buffer

L

Complementary AND gate
Complementary OR gate

)

Complementary XOR gate

.

Complementary gates are especially useful in "crowded” circuits where there may not be
enough physical room to mount the additional integrated circuit chips necessary to provide
both inverted and noninverted outputs using standard gates and additional inverters. They
are also useful in applications where a complementary output is necessary from a gate, but the
addition of an inverter would introduce an unwanted time lag in the inverted output relative
to the noninverted output. The internal circuitry of complemented gates is such that both
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inverted and noninverted outputs change state at almost exactly the same time:

Complemented gate Standard gate with inverter added

v®A Time delay introduced —!
_Il\j by the inverter
- v®A

Another type of special gate output is called ¢ristate, because it has the ability to provide
three different output modes: current sinking ("low” logic level), current sourcing ("high”),
and floating ("high-Z,” or high-impedance). Tristate outputs are usually found as an optional
feature on buffer gates. Such gates require an extra input terminal to control the "high-Z”
mode, and this input is usually called the enable.

Tristate buffer gate

Enable

+V

Input g—/ Output

With the enable input held "high” (1), the buffer acts like an ordinary buffer with a totem
pole output stage: it is capable of both sourcing and sinking current. However, the output
terminal floats (goes into “high-Z” mode) if ever the enable input is grounded ("low”), regardless
of the data signal’s logic level. In other words, making the enable input terminal "low” (0)
effectively disconnects the gate from whatever its output is wired to so that it can no longer
have any effect.

Tristate buffers are marked in schematic diagrams by a triangle character within the gate
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symbol like this:

Tristate buffer symbol

Enable (B)

Input % Output
(A)

Truth table

B | Output
High-Z
1 0
0 | High-Z
1 1

R[OOI >

Tristate buffers are also made with inverted enable inputs. Such a gate acts normal when
the enable input is "low” (0) and goes into high-Z output mode when the enable input is "high”
(1):

Tristate buffer with
inverted enable input

Enable (B)

Input ~[§ Output
(A

Truth table

B | Output
0 0
1| High-Z
0 1
1| 1| High-Z

= k=li=lp

One special type of gate known as the bilateral switch uses gate-controlled MOSFET tran-
sistors acting as on/off switches to switch electrical signals, analog or digital. The “on” resis-
tance of such a switch is in the range of several hundred ohms, the "off” resistance being in the
range of several hundred mega-ohms.
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Bilateral switches appear in schematics as SPST (Single-Pole, Single-Throw) switches in-
side of rectangular boxes, with a control terminal on one of the box’s long sides:

CMOS bilateral switch

Control
|

In/Out ——"—— In/Out

A bilateral switch might be best envisioned as a solid-state (semiconductor) version of an
electromechanical relay: a signal-actuated switch contact that may be used to conduct virtu-
ally any type of electric signal. Of course, being solid-state, the bilateral switch has none of
the undesirable characteristics of electromechanical relays, such as contact "bouncing,” arcing,
slow speed, or susceptibility to mechanical vibration. Conversely, though, they are rather lim-
ited in their current-carrying ability. Additionally, the signal conducted by the “contact” must
not exceed the power supply "rail” voltages powering the bilateral switch circuit.

Four bilateral switches are packaged inside the popular model ”4066” integrated circuit:

Quad CMOS bilateral switch
4066

14 13 12 11 10 9 8

1 =] GND

¢ REVIEW:

e Complementary gates provide both inverted and noninverted output signals, in such a
way that neither one is delayed with respect to the other.

e Tristate gates provide three different output states: high, low, and floating (High-Z). Such
gates are commanded into their high-impedance output modes by a separate input ter-
minal called the enable.

e Bilateral switches are MOSFET circuits providing on/off switching for a variety of electri-
cal signal types (analog and digital), controlled by logic level voltage signals. In essence,
they are solid-state relays with very low current-handling ability.
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3.9 Gate universality

NAND and NOR gates possess a special property: they are universal. That is, given enough
gates, either type of gate is able to mimic the operation of any other gate type. For example,
it is possible to build a circuit exhibiting the OR function using three interconnected NAND
gates. The ability for a single gate type to be able to mimic any other gate type is one enjoyed
only by the NAND and the NOR. In fact, digital control systems have been designed around
nothing but either NAND or NOR gates, all the necessary logic functions being derived from
collections of interconnected NANDs or NORs.

As proof of this property, this section will be divided into subsections showing how all the
basic gate types may be formed using only NANDs or only NORs.

3.9.1 Constructing the NOT function

Input ~[>o Output

Input | Output

0 1
1 0
Input Input —
} Output 3 Output
.or. ..
+V
- Input
Output Output
Input

As you can see, there are two ways to use a NAND gate as an inverter, and two ways to use
a NOR gate as an inverter. Either method works, although connecting TTL inputs together
increases the amount of current loading to the driving gate. For CMOS gates, common input
terminals decreases the switching speed of the gate due to increased input capacitance.
Inverters are the fundamental tool for transforming one type of logic function into another,
and so there will be many inverters shown in the illustrations to follow. In those diagrams, I
will only show one method of inversion, and that will be where the unused NAND gate input
is connected to +V (either V.. or V4,4, depending on whether the circuit is TTL or CMOS) and
where the unused input for the NOR gate is connected to ground. Bear in mind that the other
inversion method (connecting both NAND or NOR inputs together) works just as well from a
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logical (1’s and 0’s) point of view, but is undesirable from the practical perspectives of increased
current loading for TTL and increased input capacitance for CMOS.

3.9.2 Constructing the ”buffer” function

Being that it is quite easy to employ NAND and NOR gates to perform the inverter (NOT)
function, it stands to reason that two such stages of gates will result in a buffer function,
where the output is the same logical state as the input.

Input ~[> Output

Input | Output
0 0
1 1

+V

i\ll_—i} Output

Input

Input
Output

3.9.3 Constructing the AND function

To make the AND function from NAND gates, all that is needed is an inverter (NOT) stage on
the output of a NAND gate. This extra inversion “cancels out” the first N in NAND, leaving
the AND function. It takes a little more work to wrestle the same functionality out of NOR
gates, but it can be done by inverting ("NOT”) all of the inputs to a NOR gate.
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2-input AND gate

InputA—} Output
Inputg—

A | B| Output
0|0 0
0|1 0
10 0
1|1 1

+V
Input,— > } Output

Inputg—

Input,

- Output
Inputg

3.9.4 Constructing the NAND function

It would be pointless to show you how to "construct” the NAND function using a NAND gate,
since there is nothing to do. To make a NOR gate perform the NAND function, we must invert
all inputs to the NOR gate as well as the NOR gate’s output. For a two-input gate, this requires
three more NOR gates connected as inverters.
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2-input NAND gate

InputA—} Output
Inputg—

A| B| Output
0|0 1
0|1 1
1|0 1
1|1 0

Output

3.9.5 Constructing the OR function

Inverting the output of a NOR gate (with another NOR gate connected as an inverter) results
in the OR function. The NAND gate, on the other hand, requires inversion of all inputs to
mimic the OR function, just as we needed to invert all inputs of a NOR gate to obtain the
AND function. Remember that inversion of all inputs to a gate results in changing that gate’s
essential function from AND to OR (or vice versa), plus an inverted output. Thus, with all
inputs inverted, a NAND behaves as an OR, a NOR behaves as an AND, an AND behaves as
a NOR, and an OR behaves as a NAND. In Boolean algebra, this transformation is referred to
as DeMorgan’s Theorem, covered in more detail in a later chapter of this book.
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2-input OR gate

|npUtAj>7 Output
Inputg

A | B| Output
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+V
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+V } Output
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InputB_)oj

Input,
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3.9.6 Constructing the NOR function

Much the same as the procedure for making a NOR gate behave as a NAND, we must invert
all inputs and the output to make a NAND gate function as a NOR.
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2-input NOR gate

|npUtA® Output
Inputg

A| B | Output
0|0 1
0|1 0
1{0 0
11 0

+V

L +V
A
O

s

Inputg |

e REVIEW:

e NAND and NOR gates are universal: that is, they have the ability to mimic any type of
gate, if interconnected in sufficient numbers.

3.10 Logic signal voltage levels

Logic gate circuits are designed to input and output only two types of signals: "high” (1) and
"low” (0), as represented by a variable voltage: full power supply voltage for a "high” state and
zero voltage for a "low” state. In a perfect world, all logic circuit signals would exist at these
extreme voltage limits, and never deviate from them (i.e., less than full voltage for a high,”
or more than zero voltage for a "low”). However, in reality, logic signal voltage levels rarely
attain these perfect limits due to stray voltage drops in the transistor circuitry, and so we must
understand the signal level limitations of gate circuits as they try to interpret signal voltages
lying somewhere between full supply voltage and zero.

TTL gates operate on a nominal power supply voltage of 5 volts, +/- 0.25 volts. Ideally, a TTL
“high” signal would be 5.00 volts exactly, and a TTL ”low” signal 0.00 volts exactly. However,
real TTL gate circuits cannot output such perfect voltage levels, and are designed to accept
“high” and "low” signals deviating substantially from these ideal values. ”Acceptable” input
signal voltages range from 0 volts to 0.8 volts for a "low” logic state, and 2 volts to 5 volts for
a "high” logic state. “Acceptable” output signal voltages (voltage levels guaranteed by the gate
manufacturer over a specified range of load conditions) range from 0 volts to 0.5 volts for a
“low” logic state, and 2.7 volts to 5 volts for a ”high” logic state:
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Acceptable TTL gate Acceptable TTL gate
input signal levels output signal levels
T 5V -5V
4 V.=5V i 4
High cc High
T = 27v
| 2V 4
4 08V — T
Low - —1— 05V
—[__OV Low—[__ov

If a voltage signal ranging between 0.8 volts and 2 volts were to be sent into the input
of a TTL gate, there would be no certain response from the gate. Such a signal would be
considered uncertain, and no logic gate manufacturer would guarantee how their gate circuit
would interpret such a signal.

As you can see, the tolerable ranges for output signal levels are narrower than for input
signal levels, to ensure that any TTL gate outputting a digital signal into the input of another
TTL gate will transmit voltages acceptable to the receiving gate. The difference between the
tolerable output and input ranges is called the noise margin of the gate. For TTL gates, the
low-level noise margin is the difference between 0.8 volts and 0.5 volts (0.3 volts), while the
high-level noise margin is the difference between 2.7 volts and 2 volts (0.7 volts). Simply put,
the noise margin is the peak amount of spurious or "noise” voltage that may be superimposed
on a weak gate output voltage signal before the receiving gate might interpret it wrongly:

Acceptable TTL gate Acceptable TTL gate
input signal levels output signal levels
T-5V T-5V
High T high-level noise margin  High T
T OO 000.00700.0.900.0.090.0.090:0.990. —+ 27 V
L] KRR RRRRRRKRKK: B
Low I [ 05V
giul = ov

low-level noise margin

CMOS gate circuits have input and output signal specifications that are quite different
from TTL. For a CMOS gate operating at a power supply voltage of 5 volts, the acceptable
input signal voltages range from 0 volts to 1.5 volts for a "low” logic state, and 3.5 volts to 5
volts for a “high” logic state. "Acceptable” output signal voltages (voltage levels guaranteed by
the gate manufacturer over a specified range of load conditions) range from 0 volts to 0.05 volts
for a "low” logic state, and 4.95 volts to 5 volts for a high” logic state:
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Acceptable CMOS gate Acceptable CMOS gate
input signal levels output signal levels
: 5V
. T 5V High — —— J g5v
H|gh 1 Vdd =5V 1
T 35V 1
+-15v 1
How { i N | oosv
—ov Low —==gy

It should be obvious from these figures that CMOS gate circuits have far greater noise
margins than TTL: 1.45 volts for CMOS low-level and high-level margins, versus a maximum
of 0.7 volts for TTL. In other words, CMOS circuits can tolerate over twice the amount of
superimposed “noise” voltage on their input lines before signal interpretation errors will result.

CMOS noise margins widen even further with higher operating voltages. Unlike TTL,
which is restricted to a power supply voltage of 5 volts, CMOS may be powered by voltages
as high as 15 volts (some CMOS circuits as high as 18 volts). Shown here are the acceptable
“high” and "low” states, for both input and output, of CMOS integrated circuits operating at 10
volts and 15 volts, respectively:

Acceptable CMOS gate Acceptable CMOS gate
input signal levels output signal levels
—1— 10V High — —«— 10V
1 1 995V
High
T’V V=10V T
—+ 3V - 4
Low 1 T
| 005V

—ov Low —==gy
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Acceptable CMOS gate Acceptable CMOS gate
input signal levels output signal levels
. High — —— 15V
LV g 1495V
High { < +
-1 11V T
1 V=15V T
— —— 4 V -3
Low —{ <+ +
_| 005V
T ov Low —==gv

The margins for acceptable "high” and "low” signals may be greater than what is shown in
the previous illustrations. What is shown represents "worst-case” input signal performance,
based on manufacturer’s specifications. In practice, it may be found that a gate circuit will
tolerate "high” signals of considerably less voltage and "low” signals of considerably greater
voltage than those specified here.

Conversely, the extremely small output margins shown — guaranteeing output states for
“high” and "low” signals to within 0.05 volts of the power supply “rails” — are optimistic. Such
”solid” output voltage levels will be true only for conditions of minimum loading. If the gate is
sourcing or sinking substantial current to a load, the output voltage will not be able to maintain
these optimum levels, due to internal channel resistance of the gate’s final output MOSFETSs.

Within the "uncertain” range for any gate input, there will be some point of demarcation
dividing the gate’s actual "low” input signal range from its actual "high” input signal range.
That is, somewhere between the lowest “high” signal voltage level and the highest "low” signal
voltage level guaranteed by the gate manufacturer, there is a threshold voltage at which the
gate will actually switch its interpretation of a signal from ”"low” or “high” or vice versa. For
most gate circuits, this unspecified voltage is a single point:
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Typical response of a logic gate
to a variable (analog) input voltage

5V V=5V

=+ >_ Vout

ov - ———— - -
Time —

In the presence of AC "noise” voltage superimposed on the DC input signal, a single thresh-
old point at which the gate alters its interpretation of logic level will result in an erratic output:

Slowly-changing DC signal with
AC noise superimposed

=+ >_ Vout

Time —

If this scenario looks familiar to you, it’s because you remember a similar problem with
(analog) voltage comparator op-amp circuits. With a single threshold point at which an input
causes the output to switch between "high” and "low” states, the presence of significant noise
will cause erratic changes in the output:
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The solution to this problem is a bit of positive feedback introduced into the amplifier circuit.
With an op-amp, this is done by connecting the output back around to the noninverting (+)
input through a resistor. In a gate circuit, this entails redesigning the internal gate circuitry,
establishing the feedback inside the gate package rather than through external connections. A
gate so designed is called a Schmitt trigger. Schmitt triggers interpret varying input voltages
according to two threshold voltages: a positive-going threshold (Vr.), and a negative-going
threshold (V1_):

Schmitt trigger response to a
"noisy" input signal

5V V=5V

ov - — - -
Time —

Schmitt trigger gates are distinguished in schematic diagrams by the small "hysteresis”
symbol drawn within them, reminiscent of the B-H curve for a ferromagnetic material. Hys-
teresis engendered by positive feedback within the gate circuitry adds an additional level of
noise immunity to the gate’s performance. Schmitt trigger gates are frequently used in ap-
plications where noise is expected on the input signal line(s), and/or where an erratic output
would be very detrimental to system performance.
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The differing voltage level requirements of TTL and CMOS technology present problems
when the two types of gates are used in the same system. Although operating CMOS gates on
the same 5.00 volt power supply voltage required by the TTL gates is no problem, TTL output
voltage levels will not be compatible with CMOS input voltage requirements.

Take for instance a TTL NAND gate outputting a signal into the input of a CMOS inverter
gate. Both gates are powered by the same 5.00 volt supply (V..). If the TTL gate outputs a
“low” signal (guaranteed to be between 0 volts and 0.5 volts), it will be properly interpreted by
the CMOS gate’s input as a "low” (expecting a voltage between 0 volts and 1.5 volts):

+ Ve Vad
—_— PRI p——— IIIOWII
5V — N )O—| So—
) TTL  CMOS
5V —1— —T—5V
L | 1 cmos
output input
T T 15v
05V I o ___ T
oV b - L ov

TTL output falls within
acceptable limits for
CMOS input

However, if the TTL gate outputs a "high” signal (guaranteed to be between 5 volts and 2.7
volts), it might not be properly interpreted by the CMOS gate’s input as a "high” (expecting a
voltage between 5 volts and 3.5 volts):
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TTL output falls outside of
acceptable limits for
CMOS input

Given this mismatch, it is entirely possible for the TTL gate to output a valid "high” signal
(valid, that is, according to the standards for TTL) that lies within the "uncertain” range for
the CMOS input, and may be (falsely) interpreted as a "low” by the receiving gate. An easy
“fix” for this problem is to augment the TTL gate’s "high” signal voltage level by means of a
pullup resistor:

+ Vee RpuIIup Vi
S5V — _ o
) TTL  CMOS
5V o -----mmmmeooe- T 5V
I T_ ______ | 35v
TTL T
output + 4+ CMOS
input
ov — — 0oV

TTL "high" output voltage
assisted by Ryyp

Something more than this, though, is required to interface a TTL output with a CMOS
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input, if the receiving CMOS gate is powered by a greater power supply voltage:

+ VCC Vdd +
5V _— ] )o—| So— — 1ov
i TTL CMOS i
- T 0V
—+ 7v
T CMOS
SV 7w L input
TTL o7y S e - 3V
output 05V 1
OV 0 - OV

The TTL "high" signal will
definitely not fall within the
CMOS gate’s acceptable limits

There will be no problem with the CMOS gate interpreting the TTL gate’s "low” output,
of course, but a "high” signal from the TTL gate is another matter entirely. The guaranteed
output voltage range of 2.7 volts to 5 volts from the TTL gate output is nowhere near the CMOS
gate’s acceptable range of 7 volts to 10 volts for a “high” signal. If we use an open-collector TTL
gate instead of a totem-pole output gate, though, a pullup resistor to the 10 volt V4, supply rail
will raise the TTL gate’s "high” output voltage to the full power supply voltage supplying the
CMOS gate. Since an open-collector gate can only sink current, not source current, the “high”
state voltage level is entirely determined by the power supply to which the pullup resistor is
attached, thus neatly solving the mismatch problem:
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Now, both "low" and "high"
TTL signals are acceptable
to the CMOS gate input

Due to the excellent output voltage characteristics of CMOS gates, there is typically no
problem connecting a CMOS output to a TTL input. The only significant issue is the current
loading presented by the TTL inputs, since the CMOS output must sink current for each of the
TTL inputs while in the "low” state.

When the CMOS gate in question is powered by a voltage source in excess of 5 volts (V..),
though, a problem will result. The "high” output state of the CMOS gate, being greater than 5
volts, will exceed the TTL gate’s acceptable input limits for a “high” signal. A solution to this
problem is to create an “open-collector” inverter circuit using a discrete NPN transistor, and
use it to interface the two gates together:

Rpullup
+ Vg Ve +
ov— o— =5V
) CMOS TTL i

The "Rpuup” resistor is optional, since TTL inputs automatically assume a “high” state
when left floating, which is what will happen when the CMOS gate output is "low” and the
transistor cuts off. Of course, one very important consequence of implementing this solution is
the logical inversion created by the transistor: when the CMOS gate outputs a "low” signal, the
TTL gate sees a "high” input; and when the CMOS gate outputs a "high” signal, the transistor
saturates and the TTL gate sees a "low” input. So long as this inversion is accounted for in the
logical scheme of the system, all will be well.
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3.11 DIP gate packaging

Digital logic gate circuits are manufactured as integrated circuits: all the constituent transis-
tors and resistors built on a single piece of semiconductor material. The engineer, technician,
or hobbyist using small numbers of gates will likely find what he or she needs enclosed in a
DIP (Dual Inline Package) housing. DIP-enclosed integrated circuits are available with even
numbers of pins, located at 0.100 inch intervals from each other for standard circuit board
layout compatibility. Pin counts of 8, 14, 16, 18, and 24 are common for DIP "chips.”

Part numbers given to these DIP packages specify what type of gates are enclosed, and how
many. These part numbers are industry standards, meaning that a "74L.S02” manufactured by
Motorola will be identical in function to a "74LS02” manufactured by Fairchild or by any other
manufacturer. Letter codes prepended to the part number are unique to the manufacturer,
and are not industry-standard codes. For instance, a SN74LS02 is a quad 2-input TTL NOR
gate manufactured by Motorola, while a DM74LS02 is the exact same circuit manufactured by
Fairchild.

Logic circuit part numbers beginning with ”74” are commercial-grade TTL. If the part num-
ber begins with the number ”54”, the chip is a military-grade unit: having a greater operat-
ing temperature range, and typically more robust in regard to allowable power supply and
signal voltage levels. The letters "LS” immediately following the 74/54 prefix indicate "Low-
power Schottky” circuitry, using Schottky-barrier diodes and transistors throughout, to de-
crease power dissipation. Non-Schottky gate circuits consume more power, but are able to
operate at higher frequencies due to their faster switching times.

A few of the more common TTL "DIP” circuit packages are shown here for reference:
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Hex inverter
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4011
Quad NAND gate
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3.12 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
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recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jan-Willem Rensman (May 2, 2002): Suggested the inclusion of Schmitt triggers and gate

hysteresis to this chapter.
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SWITCHES
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4.1 Switch types

An electrical switch is any device used to interrupt the flow of electrons in a circuit. Switches
are essentially binary devices: they are either completely on ("closed”) or completely off ("open”).
There are many different types of switches, and we will explore some of these types in this
chapter.

Though it may seem strange to cover this elementary electrical topic at such a late stage
in this book series, I do so because the chapters that follow explore an older realm of digital
technology based on mechanical switch contacts rather than solid-state gate circuits, and a
thorough understanding of switch types is necessary for the undertaking. Learning the func-
tion of switch-based circuits at the same time that you learn about solid-state logic gates makes
both topics easier to grasp, and sets the stage for an enhanced learning experience in Boolean
algebra, the mathematics behind digital logic circuits.

The simplest type of switch is one where two electrical conductors are brought in contact
with each other by the motion of an actuating mechanism. Other switches are more complex,
containing electronic circuits able to turn on or off depending on some physical stimulus (such
as light or magnetic field) sensed. In any case, the final output of any switch will be (at least) a
pair of wire-connection terminals that will either be connected together by the switch’s internal
contact mechanism (”closed”), or not connected together ("open”).

Any switch designed to be operated by a person is generally called a hand switch, and they
are manufactured in several varieties:

103
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Toggle switch

—o/o—

Toggle switches are actuated by a lever angled in one of two or more positions. The common
light switch used in household wiring is an example of a toggle switch. Most toggle switches
will come to rest in any of their lever positions, while others have an internal spring mecha-
nism returning the lever to a certain normal position, allowing for what is called "momentary”
operation.

Pushbutton switch

1

— e o—

Pushbutton switches are two-position devices actuated with a button that is pressed and
released. Most pushbutton switches have an internal spring mechanism returning the button
to its “out,” or "unpressed,” position, for momentary operation. Some pushbutton switches
will latch alternately on or off with every push of the button. Other pushbutton switches will
stay in their ”in,” or "pressed,” position until the button is pulled back out. This last type of
pushbutton switches usually have a mushroom-shaped button for easy push-pull action.

Selector switch

S P

—e o—

Selector switches are actuated with a rotary knob or lever of some sort to select one of two
or more positions. Like the toggle switch, selector switches can either rest in any of their
positions or contain spring-return mechanisms for momentary operation.

Joystick switch

Q@

A joystick switch is actuated by a lever free to move in more than one axis of motion. One or
more of several switch contact mechanisms are actuated depending on which way the lever is
pushed, and sometimes by how far it is pushed. The circle-and-dot notation on the switch sym-
bol represents the direction of joystick lever motion required to actuate the contact. Joystick
hand switches are commonly used for crane and robot control.

Some switches are specifically designed to be operated by the motion of a machine rather
than by the hand of a human operator. These motion-operated switches are commonly called
limit switches, because they are often used to limit the motion of a machine by turning off the
actuating power to a component if it moves too far. As with hand switches, limit switches come
in several varieties:
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Lever actuator limit switch

_\._
These limit switches closely resemble rugged toggle or selector hand switches fitted with

a lever pushed by the machine part. Often, the levers are tipped with a small roller bearing,
preventing the lever from being worn off by repeated contact with the machine part.

Proximity switch
prox

—‘\'—

Proximity switches sense the approach of a metallic machine part either by a magnetic or
high-frequency electromagnetic field. Simple proximity switches use a permanent magnet to
actuate a sealed switch mechanism whenever the machine part gets close (typically 1 inch or
less). More complex proximity switches work like a metal detector, energizing a coil of wire
with a high-frequency current, and electronically monitoring the magnitude of that current.
If a metallic part (not necessarily magnetic) gets close enough to the coil, the current will
increase, and trip the monitoring circuit. The symbol shown here for the proximity switch is
of the electronic variety, as indicated by the diamond-shaped box surrounding the switch. A
non-electronic proximity switch would use the same symbol as the lever-actuated limit switch.

Another form of proximity switch is the optical switch, comprised of a light source and
photocell. Machine position is detected by either the interruption or reflection of a light beam.
Optical switches are also useful in safety applications, where beams of light can be used to
detect personnel entry into a dangerous area.

In many industrial processes, it is necessary to monitor various physical quantities with
switches. Such switches can be used to sound alarms, indicating that a process variable has
exceeded normal parameters, or they can be used to shut down processes or equipment if those
variables have reached dangerous or destructive levels. There are many different types of
process switches:

Speed switch
A

e
P a N

These switches sense the rotary speed of a shaft either by a centrifugal weight mechanism
mounted on the shaft, or by some kind of non-contact detection of shaft motion such as optical
or magnetic.

Pressure switch

—
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Gas or liquid pressure can be used to actuate a switch mechanism if that pressure is applied
to a piston, diaphragm, or bellows, which converts pressure to mechanical force.

Temperature switch

e

An inexpensive temperature-sensing mechanism is the "bimetallic strip:” a thin strip of two
metals, joined back-to-back, each metal having a different rate of thermal expansion. When
the strip heats or cools, differing rates of thermal expansion between the two metals causes
it to bend. The bending of the strip can then be used to actuate a switch contact mechanism.
Other temperature switches use a brass bulb filled with either a liquid or gas, with a tiny
tube connecting the bulb to a pressure-sensing switch. As the bulb is heated, the gas or liquid
expands, generating a pressure increase which then actuates the switch mechanism.

Liquid level switch

ol

A floating object can be used to actuate a switch mechanism when the liquid level in an tank
rises past a certain point. If the liquid is electrically conductive, the liquid itself can be used as
a conductor to bridge between two metal probes inserted into the tank at the required depth.
The conductivity technique is usually implemented with a special design of relay triggered by
a small amount of current through the conductive liquid. In most cases it is impractical and
dangerous to switch the full load current of the circuit through a liquid.

Level switches can also be designed to detect the level of solid materials such as wood chips,
grain, coal, or animal feed in a storage silo, bin, or hopper. A common design for this application
is a small paddle wheel, inserted into the bin at the desired height, which is slowly turned by a
small electric motor. When the solid material fills the bin to that height, the material prevents
the paddle wheel from turning. The torque response of the small motor than trips the switch
mechanism. Another design uses a "tuning fork” shaped metal prong, inserted into the bin
from the outside at the desired height. The fork is vibrated at its resonant frequency by an
electronic circuit and magnet/electromagnet coil assembly. When the bin fills to that height,
the solid material dampens the vibration of the fork, the change in vibration amplitude and/or
frequency detected by the electronic circuit.

Liquid flow switch

ERSE
Inserted into a pipe, a flow switch will detect any gas or liquid flow rate in excess of a
certain threshold, usually with a small paddle or vane which is pushed by the flow. Other flow

switches are constructed as differential pressure switches, measuring the pressure drop across
a restriction built into the pipe.
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Another type of level switch, suitable for liquid or solid material detection, is the nu-
clear switch. Composed of a radioactive source material and a radiation detector, the two are
mounted across the diameter of a storage vessel for either solid or liquid material. Any height
of material beyond the level of the source/detector arrangement will attenuate the strength
of radiation reaching the detector. This decrease in radiation at the detector can be used to
trigger a relay mechanism to provide a switch contact for measurement, alarm point, or even
control of the vessel level.

Nuclear level switch
(for solid or liquid material)

source [ L1 detector

source [ [1 detector

Both source and detector are outside of the vessel, with no intrusion at all except the radi-
ation flux itself. The radioactive sources used are fairly weak and pose no immediate health
threat to operations or maintenance personnel.

As usual, there is usually more than one way to implement a switch to monitor a physical
process or serve as an operator control. There is usually no single "perfect” switch for any
application, although some obviously exhibit certain advantages over others. Switches must
be intelligently matched to the task for efficient and reliable operation.

e REVIEW:

e A switch is an electrical device, usually electromechanical, used to control continuity
between two points.

e Hand switches are actuated by human touch.
e Limit switches are actuated by machine motion.

e Process switches are actuated by changes in some physical process (temperature, level,
flow, etc.).
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4.2 Switch contact design

A switch can be constructed with any mechanism bringing two conductors into contact with
each other in a controlled manner. This can be as simple as allowing two copper wires to
touch each other by the motion of a lever, or by directly pushing two metal strips into contact.
However, a good switch design must be rugged and reliable, and avoid presenting the operator
with the possibility of electric shock. Therefore, industrial switch designs are rarely this crude.

The conductive parts in a switch used to make and break the electrical connection are
called contacts. Contacts are typically made of silver or silver-cadmium alloy, whose conductive
properties are not significantly compromised by surface corrosion or oxidation. Gold contacts
exhibit the best corrosion resistance, but are limited in current-carrying capacity and may
“cold weld” if brought together with high mechanical force. Whatever the choice of metal, the
switch contacts are guided by a mechanism ensuring square and even contact, for maximum
reliability and minimum resistance.

Contacts such as these can be constructed to handle extremely large amounts of electric cur-
rent, up to thousands of amps in some cases. The limiting factors for switch contact ampacity
are as follows:

e Heat generated by current through metal contacts (while closed).
e Sparking caused when contacts are opened or closed.

e The voltage across open switch contacts (potential of current jumping across the gap).

One major disadvantage of standard switch contacts is the exposure of the contacts to the
surrounding atmosphere. In a nice, clean, control-room environment, this is generally not a
problem. However, most industrial environments are not this benign. The presence of corrosive
chemicals in the air can cause contacts to deteriorate and fail prematurely. Even more trouble-
some is the possibility of regular contact sparking causing flammable or explosive chemicals to
ignite.

When such environmental concerns exist, other types of contacts can be considered for
small switches. These other types of contacts are sealed from contact with the outside air, and
therefore do not suffer the same exposure problems that standard contacts do.

A common type of sealed-contact switch is the mercury switch. Mercury is a metallic ele-
ment, liquid at room temperature. Being a metal, it possesses excellent conductive properties.
Being a liquid, it can be brought into contact with metal probes (to close a circuit) inside of
a sealed chamber simply by tilting the chamber so that the probes are on the bottom. Many
industrial switches use small glass tubes containing mercury which are tilted one way to close
the contact, and tilted another way to open. Aside from the problems of tube breakage and
spilling mercury (which is a toxic material), and susceptibility to vibration, these devices are
an excellent alternative to open-air switch contacts wherever environmental exposure prob-
lems are a concern.

Here, a mercury switch (often called a ¢ilt switch) is shown in the open position, where the
mercury is out of contact with the two metal contacts at the other end of the glass bulb:
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Here, the same switch is shown in the closed position. Gravity now holds the liquid mercury
in contact with the two metal contacts, providing electrical continuity from one to the other:

Mercury switch contacts are impractical to build in large sizes, and so you will typically
find such contacts rated at no more than a few amps, and no more than 120 volts. There are
exceptions, of course, but these are common limits.

Another sealed-contact type of switch is the magnetic reed switch. Like the mercury switch,
a reed switch’s contacts are located inside a sealed tube. Unlike the mercury switch which uses
liquid metal as the contact medium, the reed switch is simply a pair of very thin, magnetic,
metal strips (hence the name “reed”) which are brought into contact with each other by apply-
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ing a strong magnetic field outside the sealed tube. The source of the magnetic field in this
type of switch is usually a permanent magnet, moved closer to or further away from the tube
by the actuating mechanism. Due to the small size of the reeds, this type of contact is typically
rated at lower currents and voltages than the average mercury switch. However, reed switches
typically handle vibration better than mercury contacts, because there is no liquid inside the
tube to splash around.

It is common to find general-purpose switch contact voltage and current ratings to be
greater on any given switch or relay if the electric power being switched is AC instead of DC.
The reason for this is the self-extinguishing tendency of an alternating-current arc across an
air gap. Because 60 Hz power line current actually stops and reverses direction 120 times per
second, there are many opportunities for the ionized air of an arc to lose enough temperature
to stop conducting current, to the point where the arc will not re-start on the next voltage peak.
DC, on the other hand, is a continuous, uninterrupted flow of electrons which tends to main-
tain an arc across an air gap much better. Therefore, switch contacts of any kind incur more
wear when switching a given value of direct current than for the same value of alternating cur-
rent. The problem of switching DC is exaggerated when the load has a significant amount of
inductance, as there will be very high voltages generated across the switch’s contacts when the
circuit is opened (the inductor doing its best to maintain circuit current at the same magnitude
as when the switch was closed).

With both AC and DC, contact arcing can be minimized with the addition of a snubber”
circuit (a capacitor and resistor wired in series) in parallel with the contact, like this:

"Snubber"

A sudden rise in voltage across the switch contact caused by the contact opening will be
tempered by the capacitor’s charging action (the capacitor opposing the increase in voltage by
drawing current). The resistor limits the amount of current that the capacitor will discharge
through the contact when it closes again. If the resistor were not there, the capacitor might
actually make the arcing during contact closure worse than the arcing during contact open-
ing without a capacitor! While this addition to the circuit helps mitigate contact arcing, it is
not without disadvantage: a prime consideration is the possibility of a failed (shorted) capaci-
tor/resistor combination providing a path for electrons to flow through the circuit at all times,
even when the contact is open and current is not desired. The risk of this failure, and the
severity of the resulting consequences must be considered against the increased contact wear
(and inevitable contact failure) without the snubber circuit.

The use of snubbers in DC switch circuits is nothing new: automobile manufacturers have
been doing this for years on engine ignition systems, minimizing the arcing across the switch
contact "points” in the distributor with a small capacitor called a condenser. As any mechanic
can tell you, the service life of the distributor’s “points” is directly related to how well the
condenser is functioning.

With all this discussion concerning the reduction of switch contact arcing, one might be
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led to think that less current is always better for a mechanical switch. This, however, is not
necessarily so. It has been found that a small amount of periodic arcing can actually be good
for the switch contacts, because it keeps the contact faces free from small amounts of dirt and
corrosion. If a mechanical switch contact is operated with too little current, the contacts will
tend to accumulate excessive resistance and may fail prematurely! This minimum amount
of electric current necessary to keep a mechanical switch contact in good health is called the
wetting current.

Normally, a switch’s wetting current rating is far below its maximum current rating, and
well below its normal operating current load in a properly designed system. However, there are
applications where a mechanical switch contact may be required to routinely handle currents
below normal wetting current limits (for instance, if a mechanical selector switch needs to open
or close a digital logic or analog electronic circuit where the current value is extremely small).
In these applications, is it highly recommended that gold-plated switch contacts be specified.
Gold is a "noble” metal and does not corrode as other metals will. Such contacts have extremely
low wetting current requirements as a result. Normal silver or copper alloy contacts will not
provide reliable operation if used in such low-current service!

e REVIEW:

e The parts of a switch responsible for making and breaking electrical continuity are called
the ”"contacts.” Usually made of corrosion-resistant metal alloy, contacts are made to touch
each other by a mechanism which helps maintain proper alignment and spacing.

e Mercury switches use a slug of liquid mercury metal as a moving contact. Sealed in a
glass tube, the mercury contact’s spark is sealed from the outside environment, making
this type of switch ideally suited for atmospheres potentially harboring explosive vapors.

e Reed switches are another type of sealed-contact device, contact being made by two thin
metal "reeds” inside a glass tube, brought together by the influence of an external mag-
netic field.

e Switch contacts suffer greater duress switching DC than AC. This is primarily due to the
self-extinguishing nature of an AC arc.

e A resistor-capacitor network called a ”snubber” can be connected in parallel with a switch
contact to reduce contact arcing.

o Wetting current is the minimum amount of electric current necessary for a switch contact
to carry in order for it to be self-cleaning. Normally this value is far below the switch’s
maximum current rating.

4.3 Contact "normal” state and make/break sequence

Any kind of switch contact can be designed so that the contacts "close” (establish continu-
ity) when actuated, or “open” (interrupt continuity) when actuated. For switches that have a
spring-return mechanism in them, the direction that the spring returns it to with no applied
force is called the normal position. Therefore, contacts that are open in this position are called
normally open and contacts that are closed in this position are called normally closed.



112 CHAPTER 4. SWITCHES

For process switches, the normal position, or state, is that which the switch is in when there
is no process influence on it. An easy way to figure out the normal condition of a process switch
is to consider the state of the switch as it sits on a storage shelf, uninstalled. Here are some
examples of "normal” process switch conditions:

e Speed switch: Shaft not turning

e Pressure switch: Zero applied pressure

e Temperature switch: Ambient (room) temperature
e Level switch: Empty tank or bin

e Flow switch: Zero liquid flow

It is important to differentiate between a switch’s "normal” condition and its "normal” use
in an operating process. Consider the example of a liquid flow switch that serves as a low-flow
alarm in a cooling water system. The normal, or properly-operating, condition of the cooling
water system is to have fairly constant coolant flow going through this pipe. If we want the
flow switch’s contact to close in the event of a loss of coolant flow (to complete an electric
circuit which activates an alarm siren, for example), we would want to use a flow switch with
normally-closed rather than normally-open contacts. When there’s adequate flow through the
pipe, the switch’s contacts are forced open; when the flow rate drops to an abnormally low level,
the contacts return to their normal (closed) state. This is confusing if you think of “normal” as
being the regular state of the process, so be sure to always think of a switch’s "normal” state
as that which it’s in as it sits on a shelf.

The schematic symbology for switches vary according to the switch’s purpose and actuation.
A normally-open switch contact is drawn in such a way as to signify an open connection, ready
to close when actuated. Conversely, a normally-closed switch is drawn as a closed connection
which will be opened when actuated. Note the following symbols:

Pushbutton switch

Normally-open Normally-closed
—Tl_o— —J_.—

There is also a generic symbology for any switch contact, using a pair of vertical lines
to represent the contact points in a switch. Normally-open contacts are designated by the
lines not touching, while normally-closed contacts are designated with a diagonal line bridging
between the two lines. Compare the two:

Generic switch contact designation

Normally-open Normally-closed

s 4
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The switch on the left will close when actuated, and will be open while in the "normal”
(unactuated) position. The switch on the right will open when actuated, and is closed in the
“normal” (unactuated) position. If switches are designated with these generic symbols, the
type of switch usually will be noted in text immediately beside the symbol. Please note that
the symbol on the left is not to be confused with that of a capacitor. If a capacitor needs to be
represented in a control logic schematic, it will be shown like this:

Capacitor

o

In standard electronic symbology, the figure shown above is reserved for polarity-sensitive
capacitors. In control logic symbology, this capacitor symbol is used for any type of capacitor,
even when the capacitor is not polarity sensitive, so as to clearly distinguish it from a normally-
open switch contact.

With multiple-position selector switches, another design factor must be considered: that is,
the sequence of breaking old connections and making new connections as the switch is moved
from position to position, the moving contact touching several stationary contacts in sequence.

1
2
common , 3
4
5

The selector switch shown above switches a common contact lever to one of five different
positions, to contact wires numbered 1 through 5. The most common configuration of a multi-
position switch like this is one where the contact with one position is broken before the contact
with the next position is made. This configuration is called break-before-make. To give an
example, if the switch were set at position number 3 and slowly turned clockwise, the contact
lever would move off of the number 3 position, opening that circuit, move to a position between
number 3 and number 4 (both circuit paths open), and then touch position number 4, closing
that circuit.

There are applications where it is unacceptable to completely open the circuit attached to
the “common” wire at any point in time. For such an application, a make-before-break switch
design can be built, in which the movable contact lever actually bridges between two positions
of contact (between number 3 and number 4, in the above scenario) as it travels between
positions. The compromise here is that the circuit must be able to tolerate switch closures
between adjacent position contacts (1 and 2, 2 and 3, 3 and 4, 4 and 5) as the selector knob is
turned from position to position. Such a switch is shown here:
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— 1

— 2

\
A

T—S

When movable contact(s) can be brought into one of several positions with stationary con-
tacts, those positions are sometimes called throws. The number of movable contacts is some-
times called poles. Both selector switches shown above with one moving contact and five sta-
tionary contacts would be designated as “single-pole, five-throw” switches.

If two identical single-pole, five-throw switches were mechanically ganged together so that
they were actuated by the same mechanism, the whole assembly would be called a "double-
pole, five-throw” switch:

common

Double-pole, 5-throw switch
assembly

Here are a few common switch configurations and their abbreviated designations:
Single-pole, single-throw
(SPST)
o

Double-pole, single-throw
(DPST)

—/o—
—/o—
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Single-pole, double-throw
(SPDT)

—
e
Double-pole, double-throw
(DPDT)
—
T
—%

Four-pole, double-throw

bt

REVIEW:

e The normal state of a switch is that where it is unactuated. For process switches, this is
the condition it’s in when sitting on a shelf, uninstalled.

A switch that is open when unactuated is called normally-open. A switch that is closed
when unactuated is called normally-closed. Sometimes the terms “normally-open” and
“normally-closed” are abbreviated N.O. and N.C., respectively.

The generic symbology for N.O. and N.C. switch contacts is as follows:

Generic switch contact designation

Normally-open Normally-closed

s 4

e Multiposition switches can be either break-before-make (most common) or make-before-
break.

e The ”poles” of a switch refers to the number of moving contacts, while the "throws” of a
switch refers to the number of stationary contacts per moving contact.
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4.4 Contact ”’bounce”

When a switch is actuated and contacts touch one another under the force of actuation, they
are supposed to establish continuity in a single, crisp moment. Unfortunately, though, switches
do not exactly achieve this goal. Due to the mass of the moving contact and any elasticity
inherent in the mechanism and/or contact materials, contacts will ’bounce” upon closure for a
period of milliseconds before coming to a full rest and providing unbroken contact. In many
applications, switch bounce is of no consequence: it matters little if a switch controlling an
incandescent lamp "bounces” for a few cycles every time it is actuated. Since the lamp’s warm-
up time greatly exceeds the bounce period, no irregularity in lamp operation will result.

However, if the switch is used to send a signal to an electronic amplifier or some other
circuit with a fast response time, contact bounce may produce very noticeable and undesired
effects:

Switch
actuated

<

- s

A closer look at the oscilloscope display reveals a rather ugly set of makes and breaks when
the switch is actuated a single time:

Close-up view of oscilloscope display:

| I

\

Contacts bouncing

If, for example, this switch is used to provide a "clock” signal to a digital counter circuit, so
that each actuation of the pushbutton switch is supposed to increment the counter by a value
of 1, what will happen instead is the counter will increment by several counts each time the
switch is actuated. Since mechanical switches often interface with digital electronic circuits
in modern systems, switch contact bounce is a frequent design consideration. Somehow, the

/
Switch is actuated
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“chattering” produced by bouncing contacts must be eliminated so that the receiving circuit
sees a clean, crisp off/on transition:

"Bounceless" switch operation

/
Switch is actuated

Switch contacts may be debounced several different ways. The most direct means is to
address the problem at its source: the switch itself. Here are some suggestions for designing
switch mechanisms for minimum bounce:

e Reduce the kinetic energy of the moving contact. This will reduce the force of impact as
it comes to rest on the stationary contact, thus minimizing bounce.

e Use "buffer springs” on the stationary contact(s) so that they are free to recoil and gently
absorb the force of impact from the moving contact.

e Design the switch for "wiping” or ”sliding” contact rather than direct impact. ”Knife”
switch designs use sliding contacts.

e Dampen the switch mechanism’s movement using an air or oil "shock absorber” mecha-
nism.

e Use sets of contacts in parallel with each other, each slightly different in mass or contact
gap, so that when one is rebounding off the stationary contact, at least one of the others
will still be in firm contact.

e "Wet” the contacts with liquid mercury in a sealed environment. After initial contact is
made, the surface tension of the mercury will maintain circuit continuity even though
the moving contact may bounce off the stationary contact several times.

Each one of these suggestions sacrifices some aspect of switch performance for limited
bounce, and so it is impractical to design all switches with limited contact bounce in mind.
Alterations made to reduce the kinetic energy of the contact may result in a small open-contact
gap or a slow-moving contact, which limits the amount of voltage the switch may handle and
the amount of current it may interrupt. Sliding contacts, while non-bouncing, still produce
“noise” (irregular current caused by irregular contact resistance when moving), and suffer
from more mechanical wear than normal contacts.

Multiple, parallel contacts give less bounce, but only at greater switch complexity and cost.
Using mercury to "wet” the contacts is a very effective means of bounce mitigation, but it is
unfortunately limited to switch contacts of low ampacity. Also, mercury-wetted contacts are
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usually limited in mounting position, as gravity may cause the contacts to "bridge” accidently

if oriented the wrong way.

If re-designing the switch mechanism is not an option, mechanical switch contacts may
be debounced externally, using other circuit components to condition the signal. A low-pass
filter circuit attached to the output of the switch, for example, will reduce the voltage/current
fluctuations generated by contact bounce:

Switch
actuated

= L S

Switch contacts may be debounced electronically, using hysteretic transistor circuits (cir-
cuits that "latch” in either a high or a low state) with built-in time delays (called “one-shot”
circuits), or two inputs controlled by a double-throw switch. These hysteretic circuits, called
maultivibrators, are discussed in detail in a later chapter.
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5.1 Relay construction

An electric current through a conductor will produce a magnetic field at right angles to the
direction of electron flow. If that conductor is wrapped into a coil shape, the magnetic field
produced will be oriented along the length of the coil. The greater the current, the greater the
strength of the magnetic field, all other factors being equal:

magnetic field

currentT lcurrent
1=

Inductors react against changes in current because of the energy stored in this magnetic
field. When we construct a transformer from two inductor coils around a common iron core,
we use this field to transfer energy from one coil to the other. However, there are simpler and
more direct uses for electromagnetic fields than the applications we’ve seen with inductors and
transformers. The magnetic field produced by a coil of current-carrying wire can be used to

119
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exert a mechanical force on any magnetic object, just as we can use a permanent magnet to
attract magnetic objects, except that this magnet (formed by the coil) can be turned on or off
by switching the current on or off through the coil.

If we place a magnetic object near such a coil for the purpose of making that object move
when we energize the coil with electric current, we have what is called a solenoid. The movable
magnetic object is called an armature, and most armatures can be moved with either direct
current (DC) or alternating current (AC) energizing the coil. The polarity of the magnetic
field is irrelevant for the purpose of attracting an iron armature. Solenoids can be used to
electrically open door latches, open or shut valves, move robotic limbs, and even actuate electric
switch mechanisms. However, if a solenoid is used to actuate a set of switch contacts, we have
a device so useful it deserves its own name: the relay.

Relays are extremely useful when we have a need to control a large amount of current
and/or voltage with a small electrical signal. The relay coil which produces the magnetic field
may only consume fractions of a watt of power, while the contacts closed or opened by that
magnetic field may be able to conduct hundreds of times that amount of power to a load. In
effect, a relay acts as a binary (on or off) amplifier.

Just as with transistors, the relay’s ability to control one electrical signal with another finds
application in the construction of logic functions. This topic will be covered in greater detail in
another lesson. For now, the relay’s "amplifying” ability will be explored.

relay

vacY e g Loa

In the above schematic, the relay’s coil is energized by the low-voltage (12 VDC) source,
while the single-pole, single-throw (SPST) contact interrupts the high-voltage (480 VAC) cir-
cuit. It is quite likely that the current required to energize the relay coil will be hundreds of
times less than the current rating of the contact. Typical relay coil currents are well below 1
amp, while typical contact ratings for industrial relays are at least 10 amps.

One relay coil/armature assembly may be used to actuate more than one set of contacts.
Those contacts may be normally-open, normally-closed, or any combination of the two. As with
switches, the "normal” state of a relay’s contacts is that state when the coil is de-energized,
just as you would find the relay sitting on a shelf, not connected to any circuit.

Relay contacts may be open-air pads of metal alloy, mercury tubes, or even magnetic reeds,
just as with other types of switches. The choice of contacts in a relay depends on the same
factors which dictate contact choice in other types of switches. Open-air contacts are the best
for high-current applications, but their tendency to corrode and spark may cause problems in
some industrial environments. Mercury and reed contacts are sparkless and won’t corrode, but
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they tend to be limited in current-carrying capacity.
Shown here are three small relays (about two inches in height, each), installed on a panel
as part of an electrical control system at a municipal water treatment plant:

The relay units shown here are called "octal-base,” because they plug into matching sockets,
the electrical connections secured via eight metal pins on the relay bottom. The screw terminal
connections you see in the photograph where wires connect to the relays are actually part of
the socket assembly, into which each relay is plugged. This type of construction facilitates easy
removal and replacement of the relay(s) in the event of failure.

Aside from the ability to allow a relatively small electric signal to switch a relatively large
electric signal, relays also offer electrical isolation between coil and contact circuits. This
means that the coil circuit and contact circuit(s) are electrically insulated from one another.
One circuit may be DC and the other AC (such as in the example circuit shown earlier), and/or
they may be at completely different voltage levels, across the connections or from connections
to ground.

While relays are essentially binary devices, either being completely on or completely off,
there are operating conditions where their state may be indeterminate, just as with semi-
conductor logic gates. In order for a relay to positively "pull in” the armature to actuate the
contact(s), there must be a certain minimum amount of current through the coil. This mini-
mum amount is called the pull-in current, and it is analogous to the minimum input voltage
that a logic gate requires to guarantee a “high” state (typically 2 Volts for TTL, 3.5 Volts for
CMOS). Once the armature is pulled closer to the coil’s center, however, it takes less magnetic
field flux (less coil current) to hold it there. Therefore, the coil current must drop below a value
significantly lower than the pull-in current before the armature ”"drops out” to its spring-loaded
position and the contacts resume their normal state. This current level is called the drop-out
current, and it is analogous to the maximum input voltage that a logic gate input will allow to
guarantee a "low” state (typically 0.8 Volts for TTL, 1.5 Volts for CMOS).

The hysteresis, or difference between pull-in and drop-out currents, results in operation
that is similar to a Schmitt trigger logic gate. Pull-in and drop-out currents (and voltages)
vary widely from relay to relay, and are specified by the manufacturer.

e REVIEW:
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e A solenoid is a device that produces mechanical motion from the energization of an elec-
tromagnet coil. The movable portion of a solenoid is called an armature.

e A relay is a solenoid set up to actuate switch contacts when its coil is energized.

e Pull-in current is the minimum amount of coil current needed to actuate a solenoid or
relay from its "normal” (de-energized) position.

e Drop-out current is the maximum coil current below which an energized relay will return
to its "normal” state.

5.2 Contactors

When a relay is used to switch a large amount of electrical power through its contacts, it is
designated by a special name: contactor. Contactors typically have multiple contacts, and
those contacts are usually (but not always) normally-open, so that power to the load is shut off
when the coil is de-energized. Perhaps the most common industrial use for contactors is the
control of electric motors.

relay
aoh A { L
-phase A
AC power B [ o8 motor
C —C

120 VAC %‘ ‘
coil

The top three contacts switch the respective phases of the incoming 3-phase AC power, typ-
ically at least 480 Volts for motors 1 horsepower or greater. The lowest contact is an "auxiliary”
contact which has a current rating much lower than that of the large motor power contacts, but
is actuated by the same armature as the power contacts. The auxiliary contact is often used
in a relay logic circuit, or for some other part of the motor control scheme, typically switching
120 Volt AC power instead of the motor voltage. One contactor may have several auxiliary
contacts, either normally-open or normally-closed, if required.

The three “opposed-question-mark” shaped devices in series with each phase going to the
motor are called overload heaters. Each "heater” element is a low-resistance strip of metal
intended to heat up as the motor draws current. If the temperature of any of these heater ele-
ments reaches a critical point (equivalent to a moderate overloading of the motor), a normally-
closed switch contact (not shown in the diagram) will spring open. This normally-closed contact
is usually connected in series with the relay coil, so that when it opens the relay will automat-
ically de-energize, thereby shutting off power to the motor. We will see more of this overload
protection wiring in the next chapter. Overload heaters are intended to provide overcurrent
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protection for large electric motors, unlike circuit breakers and fuses which serve the primary
purpose of providing overcurrent protection for power conductors.

Overload heater function is often misunderstood. They are not fuses; that is, it is not
their function to burn open and directly break the circuit as a fuse is designed to do. Rather,
overload heaters are designed to thermally mimic the heating characteristic of the particular
electric motor to be protected. All motors have thermal characteristics, including the amount
of heat energy generated by resistive dissipation (I2R), the thermal transfer characteristics of
heat “conducted” to the cooling medium through the metal frame of the motor, the physical
mass and specific heat of the materials constituting the motor, etc. These characteristics are
mimicked by the overload heater on a miniature scale: when the motor heats up toward its
critical temperature, so will the heater toward its critical temperature, ideally at the same rate
and approach curve. Thus, the overload contact, in sensing heater temperature with a thermo-
mechanical mechanism, will sense an analogue of the real motor. If the overload contact trips
due to excessive heater temperature, it will be an indication that the real motor has reached
its critical temperature (or, would have done so in a short while). After tripping, the heaters
are supposed to cool down at the same rate and approach curve as the real motor, so that they
indicate an accurate proportion of the motor’s thermal condition, and will not allow power to
be re-applied until the motor is truly ready for start-up again.

Shown here is a contactor for a three-phase electric motor, installed on a panel as part of
an electrical control system at a municipal water treatment plant:
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Three-phase, 480 volt AC power comes in to the three normally-open contacts at the top of
the contactor via screw terminals labeled "L1,” ”L2,” and "L3” (The "L2” terminal is hidden be-
hind a square-shaped “snubber” circuit connected across the contactor’s coil terminals). Power
to the motor exits the overload heater assembly at the bottom of this device via screw terminals
labeled "T1,” ”"T2,” and "T3.”

The overload heater units themselves are black, square-shaped blocks with the label "W34,”
indicating a particular thermal response for a certain horsepower and temperature rating of
electric motor. If an electric motor of differing power and/or temperature ratings were to be
substituted for the one presently in service, the overload heater units would have to be replaced
with units having a thermal response suitable for the new motor. The motor manufacturer can
provide information on the appropriate heater units to use.

A white pushbutton located between the "T'1” and "T2” line heaters serves as a way to
manually re-set the normally-closed switch contact back to its normal state after having been
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tripped by excessive heater temperature. Wire connections to the ”overload” switch contact
may be seen at the lower-right of the photograph, near a label reading "NC” (normally-closed).
On this particular overload unit, a small "window” with the label "Tripped” indicates a tripped
condition by means of a colored flag. In this photograph, there is no "tripped” condition, and
the indicator appears clear.

As a footnote, heater elements may be used as a crude current shunt resistor for determin-
ing whether or not a motor is drawing current when the contactor is closed. There may be
times when you’re working on a motor control circuit, where the contactor is located far away
from the motor itself. How do you know if the motor is consuming power when the contac-
tor coil is energized and the armature has been pulled in? If the motor’s windings are burnt
open, you could be sending voltage to the motor through the contactor contacts, but still have
zero current, and thus no motion from the motor shaft. If a clamp-on ammeter isn’t available
to measure line current, you can take your multimeter and measure millivoltage across each
heater element: if the current is zero, the voltage across the heater will be zero (unless the
heater element itself is open, in which case the voltage across it will be large); if there is cur-
rent going to the motor through that phase of the contactor, you will read a definite millivoltage
across that heater:

mvV

o g
relay /
A “r O
AC power B “fe—00——{motor
C —

120 VAC %‘ ‘
coil

This is an especially useful trick to use for troubleshooting 3-phase AC motors, to see if
one phase winding is burnt open or disconnected, which will result in a rapidly destructive
condition known as ”single-phasing.” If one of the lines carrying power to the motor is open,
it will not have any current through it (as indicated by a 0.00 mV reading across its heater),
although the other two lines will (as indicated by small amounts of voltage dropped across the
respective heaters).

e REVIEW:

e A contactor is a large relay, usually used to switch current to an electric motor or other
high-power load.

e Large electric motors can be protected from overcurrent damage through the use of over-
load heaters and overload contacts. If the series-connected heaters get too hot from exces-
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sive current, the normally-closed overload contact will open, de-energizing the contactor
sending power to the motor.

5.3 Time-delay relays

Some relays are constructed with a kind of "shock absorber” mechanism attached to the arma-
ture which prevents immediate, full motion when the coil is either energized or de-energized.
This addition gives the relay the property of time-delay actuation. Time-delay relays can be
constructed to delay armature motion on coil energization, de-energization, or both.

Time-delay relay contacts must be specified not only as either normally-open or normally-
closed, but whether the delay operates in the direction of closing or in the direction of opening.
The following is a description of the four basic types of time-delay relay contacts.

First we have the normally-open, timed-closed (NOTC) contact. This type of contact is nor-
mally open when the coil is unpowered (de-energized). The contact is closed by the application
of power to the relay coil, but only after the coil has been continuously powered for the speci-
fied amount of time. In other words, the direction of the contact’s motion (either to close or to
open) is identical to a regular NO contact, but there is a delay in closing direction. Because the
delay occurs in the direction of coil energization, this type of contact is alternatively known as
a normally-open, on-delay:

Normally-open, timed-closed

BV
5 sec.

Closes 5 seconds after coil energization
Opens immediately upon coil de-energization

The following is a timing diagram of this relay contact’s operation:

NOTC
5 sec.
_ on
Call
power | L off
- 5
seconds closed
Contact
status L open

Y

Time
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Next we have the normally-open, timed-open (NOTO) contact. Like the NOTC contact,
this type of contact is normally open when the coil is unpowered (de-energized), and closed
by the application of power to the relay coil. However, unlike the NOTC contact, the timing
action occurs upon de-energization of the coil rather than upon energization. Because the delay
occurs in the direction of coil de-energization, this type of contact is alternatively known as a
normally-open, off-delay:

Normally-open, timed-open
BN
5sec.

Closes immediately upon coil energization
Opens 5 seconds after coil de-energization

The following is a timing diagram of this relay contact’s operation:

NOTO
BN
5sec.
. on
Caoll
power | off
~— 5 —
seconds closed
Contact
status | L open

Y

Time

Next we have the normally-closed, timed-open (NCTO) contact. This type of contact is
normally closed when the coil is unpowered (de-energized). The contact is opened with the
application of power to the relay coil, but only after the coil has been continuously powered
for the specified amount of time. In other words, the direction of the contact’s motion (either
to close or to open) is identical to a regular NC contact, but there is a delay in the opening
direction. Because the delay occurs in the direction of coil energization, this type of contact is
alternatively known as a normally-closed, on-delay:
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Normally-closed, timed-open

-

5 sec.

Opens 5 seconds after coil energization
Closes immediately upon coil de-energization

The following is a timing diagram of this relay contact’s operation:

NCTO
5 sec.
. on
Caoll
power | L off
~— 5 —
seconds . closed
Contact
status open

Time >

Finally we have the normally-closed, timed-closed (NCTC) contact. Like the NCTO contact,
this type of contact is normally closed when the coil is unpowered (de-energized), and opened
by the application of power to the relay coil. However, unlike the NCTO contact, the timing
action occurs upon de-energization of the coil rather than upon energization. Because the delay
occurs in the direction of coil de-energization, this type of contact is alternatively known as a
normally-closed, off-delay:

Normally-closed, timed-closed

_.I;

5sec.

Opens immediately upon coil energization
Closes 5 seconds after coil de-energization

The following is a timing diagram of this relay contact’s operation:
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NCTC
_.Jp
5sec.
. on
Coll
power | off
~— 5 —
seconds'  ¢losed
Contact
status open
Time >

Time-delay relays are very important for use in industrial control logic circuits. Some ex-
amples of their use include:

e Flashing light control (time on, time off): two time-delay relays are used in conjunction
with one another to provide a constant-frequency on/off pulsing of contacts for sending
intermittent power to a lamp.

e Engine autostart control: Engines that are used to power emergency generators are often
equipped with "autostart” controls that allow for automatic start-up if the main electric
power fails. To properly start a large engine, certain auxiliary devices must be started
first and allowed some brief time to stabilize (fuel pumps, pre-lubrication oil pumps)
before the engine’s starter motor is energized. Time-delay relays help sequence these
events for proper start-up of the engine.

e Furnace safety purge control: Before a combustion-type furnace can be safely lit, the
air fan must be run for a specified amount of time to "purge” the furnace chamber of
any potentially flammable or explosive vapors. A time-delay relay provides the furnace
control logic with this necessary time element.

e Motor soft-start delay control: Instead of starting large electric motors by switching full
power from a dead stop condition, reduced voltage can be switched for a "softer” start and
less inrush current. After a prescribed time delay (provided by a time-delay relay), full
power is applied.

e Conveyor belt sequence delay: when multiple conveyor belts are arranged to transport
material, the conveyor belts must be started in reverse sequence (the last one first and
the first one last) so that material doesn’t get piled on to a stopped or slow-moving con-
veyor. In order to get large belts up to full speed, some time may be needed (especially if
soft-start motor controls are used). For this reason, there is usually a time-delay circuit
arranged on each conveyor to give it adequate time to attain full belt speed before the
next conveyor belt feeding it is started.
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The older, mechanical time-delay relays used pneumatic dashpots or fluid-filled piston/cylinder
arrangements to provide the “shock absorbing” needed to delay the motion of the armature.
Newer designs of time-delay relays use electronic circuits with resistor-capacitor (RC) net-
works to generate a time delay, then energize a normal (instantaneous) electromechanical
relay coil with the electronic circuit’s output. The electronic-timer relays are more versatile
than the older, mechanical models, and less prone to failure. Many models provide advanced
timer features such as "one-shot” (one measured output pulse for every transition of the input
from de-energized to energized), "recycle” (repeated on/off output cycles for as long as the input
connection is energized) and "watchdog” (changes state if the input signal does not repeatedly
cycle on and off).

"One-shot" normally-open relay contact

. on
Cail
power _ 1 off
time
—~— —
closed
Contact
status | open
Time >
"Recycle" normally-open relay contact
_ on
Call
power | off
closed
Contact
status open

Y

Time
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"Watchdog" relay contact

Coi on
oi
power J off
—»time |<«—
closed
Contact
status open

Time >

The "watchdog” timer is especially useful for monitoring of computer systems. If a computer
is being used to control a critical process, it is usually recommended to have an automatic alarm
to detect computer "lockup” (an abnormal halting of program execution due to any number of
causes). An easy way to set up such a monitoring system is to have the computer regularly en-
ergize and de-energize the coil of a watchdog timer relay (similar to the output of the "recycle”
timer). If the computer execution halts for any reason, the signal it outputs to the watchdog
relay coil will stop cycling and freeze in one or the other state. A short time thereafter, the
watchdog relay will "time out” and signal a problem.

REVIEW:
Time delay relays are built in these four basic modes of contact operation:

1: Normally-open, timed-closed. Abbreviated "NOTC”, these relays open immediately
upon coil de-energization and close only if the coil is continuously energized for the time
duration period. Also called normally-open, on-delay relays.

2: Normally-open, timed-open. Abbreviated "NOTOQO”, these relays close immediately
upon coil energization and open after the coil has been de-energized for the time duration
period. Also called normally-open, off delay relays.

3: Normally-closed, timed-open. Abbreviated "NCTO”, these relays close immediately
upon coil de-energization and open only if the coil is continuously energized for the time
duration period. Also called normally-closed, on-delay relays.

4: Normally-closed, timed-closed. Abbreviated "NCTC”, these relays open immediately
upon coil energization and close after the coil has been de-energized for the time duration
period. Also called normally-closed, off delay relays.

One-shot timers provide a single contact pulse of specified duration for each coil energiza-
tion (transition from coil off to coil on).

Recycle timers provide a repeating sequence of on-off contact pulses as long as the coil is
maintained in an energized state.

Watchdog timers actuate their contacts only if the coil fails to be continuously sequenced
on and off (energized and de-energized) at a minimum frequency.
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5.4 Protective relays

A special type of relay is one which monitors the current, voltage, frequency, or any other type
of electric power measurement either from a generating source or to a load for the purpose of
triggering a circuit breaker to open in the event of an abnormal condition. These relays are
referred to in the electrical power industry as protective relays.

The circuit breakers which are used to switch large quantities of electric power on and
off are actually electromechanical relays, themselves. Unlike the circuit breakers found in
residential and commercial use which determine when to trip (open) by means of a bimetallic
strip inside that bends when it gets too hot from overcurrent, large industrial circuit breakers
must be ”told” by an external device when to open. Such breakers have two electromagnetic
coils inside: one to close the breaker contacts and one to open them. The "trip” coil can be
energized by one or more protective relays, as well as by hand switches, connected to switch
125 Volt DC power. DC power is used because it allows for a battery bank to supply close/trip
power to the breaker control circuits in the event of a complete (AC) power failure.

Protective relays can monitor large AC currents by means of current transformers (CT’s),
which encircle the current-carrying conductors exiting a large circuit breaker, transformer,
generator, or other device. Current transformers step down the monitored current to a sec-
ondary (output) range of 0 to 5 amps AC to power the protective relay. The current relay uses
this 0-5 amp signal to power its internal mechanism, closing a contact to switch 125 Volt DC
power to the breaker’s trip coil if the monitored current becomes excessive.

Likewise, (protective) voltage relays can monitor high AC voltages by means of voltage, or
potential, transformers (PT’s) which step down the monitored voltage to a secondary range of
0 to 120 Volts AC, typically. Like (protective) current relays, this voltage signal powers the
internal mechanism of the relay, closing a contact to switch 125 Volt DC power to the breaker’s
trip coil is the monitored voltage becomes excessive.

There are many types of protective relays, some with highly specialized functions. Not all
monitor voltage or current, either. They all, however, share the common feature of outputting
a contact closure signal which can be used to switch power to a breaker trip coil, close coil,
or operator alarm panel. Most protective relay functions have been categorized into an ANSI
standard number code. Here are a few examples from that code list:

ANSI protective relay designation numbers

12 = Overspeed

24 = Overexcitation

25 = Syncrocheck

27 = Bus/ Line undervoltage

32 = Reverse power (anti-notoring)

38 = Stator overtenp (RTD)

39 = Bearing vibration

40 = Loss of excitation

46 = Negative sequence undercurrent (phase current inbal ance)
47 = Negative sequence undervoltage (phase vol tage inbal ance)
49 = Bearing overtenp (RTD)

50 = I nstantaneous overcurrent

51 Ti me overcurrent
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51V = Time overcurrent -- voltage restrained
55 = Power factor

59 = Bus overvoltage

60FL = Vol tage transformer fuse failure

67 = Phase/ G ound directional current
79 = Aut orecl ose
81 = Bus over/underfrequency

e REVIEW:

e Large electric circuit breakers do not contain within themselves the necessary mecha-
nisms to automatically trip (open) in the event of overcurrent conditions. They must be
“told” to trip by external devices.

e Protective relays are devices built to automatically trigger the actuation coils of large
electric circuit breakers under certain conditions.

5.5 Solid-state relays

As versatile as electromechanical relays can be, they do suffer many limitations. They can be
expensive to build, have a limited contact cycle life, take up a lot of room, and switch slowly,
compared to modern semiconductor devices. These limitations are especially true for large
power contactor relays. To address these limitations, many relay manufacturers offer ”solid-
state” relays, which use an SCR, TRIAC, or transistor output instead of mechanical contacts to
switch the controlled power. The output device (SCR, TRIAC, or transistor) is optically-coupled
to an LED light source inside the relay. The relay is turned on by energizing this LED, usually
with low-voltage DC power. This optical isolation between input to output rivals the best that
electromechanical relays can offer.

Solid-state relay

£ E

LED Opto-TRIAC

Being solid-state devices, there are no moving parts to wear out, and they are able to switch
on and off much faster than any mechanical relay armature can move. There is no sparking
between contacts, and no problems with contact corrosion. However, solid-state relays are
still too expensive to build in very high current ratings, and so electromechanical contactors
continue to dominate that application in industry today.

One significant advantage of a solid-state SCR or TRIAC relay over an electromechanical
device is its natural tendency to open the AC circuit only at a point of zero load current. Be-
cause SCR’s and TRIAC’s are thyristors, their inherent hysteresis maintains circuit continuity
after the LED is de-energized until the AC current falls below a threshold value (the holding

Load
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current). In practical terms what this means is the circuit will never be interrupted in the
middle of a sine wave peak. Such untimely interruptions in a circuit containing substantial
inductance would normally produce large voltage spikes due to the sudden magnetic field col-
lapse around the inductance. This will not happen in a circuit broken by an SCR or TRIAC.
This feature is called zero-crossover switching.

One disadvantage of solid state relays is their tendency to fail “shorted” on their outputs,
while electromechanical relay contacts tend to fail "open.” In either case, it is possible for a
relay to fail in the other mode, but these are the most common failures. Because a "fail-open”
state is generally considered safer than a "fail-closed” state, electromechanical relays are still
favored over their solid-state counterparts in many applications.



Chapter 6

LADDER LOGIC

Contents
6.1 "Ladder” diagrams . . . . . . . e oo oo vttt otonetooneoooeeees 135
6.2 Digitallogicfunctions . . . . . . . ¢t v vt ittt i ittt et 139
6.3 Permissive and interlockcircuits. . . . . . . . 0t ittt it e e 144
6.4 Motorcontrolcircuits . . . . . v v v v v v it v v ittt e e 147
6.5 Fail-safedesign . ... ... ..ttt ittt eenneennsonnsenns 150
6.6 Programmable logiccontrollers ... ..........c00ctveeeeno. 154
6.7 Contributors . . . . . i v v ittt it ittt e e et e 171

6.1 ”“Ladder” diagrams

Ladder diagrams are specialized schematics commonly used to document industrial control
logic systems. They are called "ladder” diagrams because they resemble a ladder, with two
vertical rails (supply power) and as many "rungs” (horizontal lines) as there are control circuits
to represent. If we wanted to draw a simple ladder diagram showing a lamp that is controlled
by a hand switch, it would look like this:

Ly L,
Switch Lamp
‘/. l \O/

The "L;” and "Ly” designations refer to the two poles of a 120 VAC supply, unless otherwise
noted. L; is the "hot” conductor, and L, is the grounded ("neutral”) conductor. These designa-
tions have nothing to do with inductors, just to make things confusing. The actual transformer
or generator supplying power to this circuit is omitted for simplicity. In reality, the circuit looks
something like this:

135
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To 480 volt AC
power source (typical)

fuse fuse

step-down "control power"
o transformer

L fuse — L
LN N 2
_ 120 VAC
Switch Lamp —
— : it

Typically in industrial relay logic circuits, but not always, the operating voltage for the
switch contacts and relay coils will be 120 volts AC. Lower voltage AC and even DC systems
are sometimes built and documented according to "ladder” diagrams:

24 VDC
L, fuse | L,
A |1
Switch Lamp —
/' 1 \m/

AA

So long as the switch contacts and relay coils are all adequately rated, it really doesn’t
matter what level of voltage is chosen for the system to operate with.

Note the number ”1” on the wire between the switch and the lamp. In the real world, that
wire would be labeled with that number, using heat-shrink or adhesive tags, wherever it was
convenient to identify. Wires leading to the switch would be labeled ”L;” and ”1,” respectively.
Wires leading to the lamp would be labeled ”1” and ”L,,” respectively. These wire numbers
make assembly and maintenance very easy. Each conductor has its own unique wire number
for the control system that it’s used in. Wire numbers do not change at any junction or node,
even if wire size, color, or length changes going into or out of a connection point. Of course, it is
preferable to maintain consistent wire colors, but this is not always practical. What matters is
that any one, electrically continuous point in a control circuit possesses the same wire number.
Take this circuit section, for example, with wire #25 as a single, electrically continuous point
threading to many different devices:



6.1. "LADDER” DIAGRAMS 137

25
2 L 25
_{ | 25 S
| 25
25
O—

In ladder diagrams, the load device (lamp, relay coil, solenoid coil, etc.) is almost always
drawn at the right-hand side of the rung. While it doesn’t matter electrically where the re-
lay coil is located within the rung, it does matter which end of the ladder’s power supply is

grounded, for reliable operation.
T

Take for instance this circuit:

\/\
120 VAC |
I-1 I-2
Switch Lamp
A 1 N

A

Here, the lamp (load) is located on the right-hand side of the rung, and so is the ground
connection for the power source. This is no accident or coincidence; rather, it is a purposeful
element of good design practice. Suppose that wire #1 were to accidently come in contact with
ground, the insulation of that wire having been rubbed off so that the bare conductor came in
contact with grounded, metal conduit. Our circuit would now function like this:
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Fuse will blow
if switch is
closed! ML
S115

\/\
120 VAC |
L, L,
Switch Lamp
7 1 '

A
Lamp cannot light!

accidental ground

With both sides of the lamp connected to ground, the lamp will be "shorted out” and un-
able to receive power to light up. If the switch were to close, there would be a short-circuit,
immediately blowing the fuse.

However, consider what would happen to the circuit with the same fault (wire #1 coming
in contact with ground), except this time we’ll swap the positions of switch and fuse (L is still

grounded):
VA T

120 VAC e
L, L,
Lamp Switch
N~ 1 /
75 energ Switch
Lamp is energized! Wle(f:fect?s no

accidental ground

This time the accidental grounding of wire #1 will force power to the lamp while the switch
will have no effect. It is much safer to have a system that blows a fuse in the event of a
ground fault than to have a system that uncontrollably energizes lamps, relays, or solenoids
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in the event of the same fault. For this reason, the load(s) must always be located nearest the
grounded power conductor in the ladder diagram.

6.2

REVIEW:

Ladder diagrams (sometimes called "ladder logic”) are a type of electrical notation and
symbology frequently used to illustrate how electromechanical switches and relays are
interconnected.

The two vertical lines are called "rails” and attach to opposite poles of a power supply,
usually 120 volts AC. L; designates the "hot” AC wire and L, the "neutral” (grounded)
conductor.

Horizontal lines in a ladder diagram are called "rungs,” each one representing a unique
parallel circuit branch between the poles of the power supply.

Typically, wires in control systems are marked with numbers and/or letters for identifica-
tion. The rule is, all permanently connected (electrically common) points must bear the
same label.

Digital logic functions

We can construct simply logic functions for our hypothetical lamp circuit, using multiple con-
tacts, and document these circuits quite easily and understandably with additional rungs to
our original "ladder.” If we use standard binary notation for the status of the switches and
lamp (0 for unactuated or de-energized; 1 for actuated or energized), a truth table can be made
to show how the logic works:

Ly L,

@

Output

R~

R(—[O|O|>
R[(O|—,|O|WT
o
W >
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Now, the lamp will come on if either contact A or contact B is actuated, because all it takes
for the lamp to be energized is to have at least one path for current from wire L; to wire 1.
What we have is a simple OR logic function, implemented with nothing more than contacts
and a lamp.

We can mimic the AND logic function by wiring the two contacts in series instead of parallel:

I-1 I-2

A B
It 1 2 v~
| | | | 3§

A | B| Output A

a0 S

ol1] o B

1o o

111 1

Now, the lamp energizes only if contact A and contact B are simultaneously actuated. A
path exists for current from wire L; to the lamp (wire 2) if and only if both switch contacts are
closed.

The logical inversion, or NOT, function can be performed on a contact input simply by using
a normally-closed contact instead of a normally-open contact:

Ly L,

A| Output
o] 1 A Do

1 0

Now, the lamp energizes if the contact is not actuated, and de-energizes when the contact
is actuated.

If we take our OR function and invert each "input” through the use of normally-closed
contacts, we will end up with a NAND function. In a special branch of mathematics known
as Boolean algebra, this effect of gate function identity changing with the inversion of input
signals is described by DeMorgan’s Theorem, a subject to be explored in more detail in a later
chapter.
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Ll L2
A L -
34
B
A
A | B| Output
olo| 1 B
ol1] 1
10| 1 or
11 o

T
B—
The lamp will be energized if either contact is unactuated. It will go out only if both contacts

are actuated simultaneously.

Likewise, if we take our AND function and invert each "input” through the use of normally-
closed contacts, we will end up with a NOR function:

L, L,
A 1 y 2
——F
A %
Output [ }
]

R(—[O]|O|>
R[(O|—,|O|W

o|lOo|Oo

A pattern quickly reveals itself when ladder circuits are compared with their logic gate
counterparts:
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e Parallel contacts are equivalent to an OR gate.
e Series contacts are equivalent to an AND gate.

e Normally-closed contacts are equivalent to a NOT gate (inverter).

We can build combinational logic functions by grouping contacts in series-parallel arrange-
ments, as well. In the following example, we have an Exclusive-OR function built from a
combination of AND, OR, and inverter (NOT) gates:

Ly L,

AN

Q

Ty T

A| B[ Output
0|0 0
0|1 1
10 1
111 0

or

o) O~

The top rung (NC contact A in series with NO contact B) is the equivalent of the top
NOT/AND gate combination. The bottom rung (NO contact A in series with NC contact B)
is the equivalent of the bottom NOT/AND gate combination. The parallel connection between
the two rungs at wire number 2 forms the equivalent of the OR gate, in allowing either rung 1
or rung 2 to energize the lamp.

To make the Exclusive-OR function, we had to use two contacts per input: one for direct
input and the other for "inverted” input. The two "A” contacts are physically actuated by the
same mechanism, as are the two "B” contacts. The common association between contacts is
denoted by the label of the contact. There is no limit to how many contacts per switch can be
represented in a ladder diagram, as each new contact on any switch or relay (either normally-
open or normally-closed) used in the diagram is simply marked with the same label.

Sometimes, multiple contacts on a single switch (or relay) are designated by a compound
labels, such as "A-1” and "A-2” instead of two ”A” labels. This may be especially useful if
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you want to specifically designate which set of contacts on each switch or relay is being used
for which part of a circuit. For simplicity’s sake, I'll refrain from such elaborate labeling in
this lesson. If you see a common label for multiple contacts, you know those contacts are all
actuated by the same mechanism.

If we wish to invert the output of any switch-generated logic function, we must use a relay
with a normally-closed contact. For instance, if we want to energize a load based on the inverse,
or NOT, of a normally-open contact, we could do this:

I—1 I—2
A CR1
1 a\
N\
CR1
2 \/\/
A

A|CRY Output
ol 0 1 A DO

1] 1 0

We will call the relay, "control relay 1,” or CR;. When the coil of CR; (symbolized with the
pair of parentheses on the first rung) is energized, the contact on the second rung opens, thus
de-energizing the lamp. From switch A to the coil of CR;, the logic function is noninverted.
The normally-closed contact actuated by relay coil CR; provides a logical inverter function to
drive the lamp opposite that of the switch’s actuation status.

Applying this inversion strategy to one of our inverted-input functions created earlier, such
as the OR-to-NAND, we can invert the output with a relay to create a noninverted function:
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Ll L2
A CR1
1 )
\_/
B
CR1
2 \/\/
)
A
A| B[ Output
olo] o B
0l1] o
10l o or
111 1

-
B—
From the switches to the coil of CRy, the logical function is that of a NAND gate. CR;’s

normally-closed contact provides one final inversion to turn the NAND function into an AND
function.

¢ REVIEW:

Parallel contacts are logically equivalent to an OR gate.

Series contacts are logically equivalent to an AND gate.

Normally closed (N.C.) contacts are logically equivalent to a NOT gate.

A relay must be used to invert the output of a logic gate function, while simple normally-
closed switch contacts are sufficient to represent inverted gate inputs.

6.3 Permissive and interlock circuits

A practical application of switch and relay logic is in control systems where several process
conditions have to be met before a piece of equipment is allowed to start. A good example of
this is burner control for large combustion furnaces. In order for the burners in a large furnace
to be started safely, the control system requests "permission” from several process switches,
including high and low fuel pressure, air fan flow check, exhaust stack damper position, access
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door position, etc. Each process condition is called a permissive, and each permissive switch
contact is wired in series, so that if any one of them detects an unsafe condition, the circuit will
be opened:

Ly L,

low fuel  high fuel m_inhmum damper CR1
pressure préssure air flow open O—

S T TN

CR1 green
Y
A

CR1 red
Y
A

Green light = conditions met: safe to start
Red light = conditions not met: unsafe to start

If all permissive conditions are met, CR; will energize and the green lamp will be lit. In
real life, more than just a green lamp would be energized: usually a control relay or fuel valve
solenoid would be placed in that rung of the circuit to be energized when all the permissive
contacts were "good:” that is, all closed. If any one of the permissive conditions are not met,
the series string of switch contacts will be broken, CR; will de-energize, and the red lamp will
light.

Note that the high fuel pressure contact is normally-closed. This is because we want the
switch contact to open if the fuel pressure gets too high. Since the "normal” condition of any
pressure switch is when zero (low) pressure is being applied to it, and we want this switch to
open with excessive (high) pressure, we must choose a switch that is closed in its normal state.

Another practical application of relay logic is in control systems where we want to ensure
two incompatible events cannot occur at the same time. An example of this is in reversible mo-
tor control, where two motor contactors are wired to switch polarity (or phase sequence) to an
electric motor, and we don’t want the forward and reverse contactors energized simultaneously:
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M1
A
1
3-phase g 5
AC > > OO motor
power ! ! 3
M1 = forward
M2 = reverse
M2

When contactor M; is energized, the 3 phases (A, B, and C) are connected directly to termi-
nals 1, 2, and 3 of the motor, respectively. However, when contactor M, is energized, phases A
and B are reversed, A going to motor terminal 2 and B going to motor terminal 1. This reversal
of phase wires results in the motor spinning the opposite direction. Let’s examine the control
circuit for these two contactors:

L 1 I-2
forward
M1 oL
1 1 a\ 3 |
reverse
M2
L 2 M
; _/

Take note of the normally-closed "OL” contact, which is the thermal overload contact acti-
vated by the "heater” elements wired in series with each phase of the AC motor. If the heaters
get too hot, the contact will change from its normal (closed) state to being open, which will
prevent either contactor from energizing.

This control system will work fine, so long as no one pushes both buttons at the same time.
If someone were to do that, phases A and B would be short-circuited together by virtue of the
fact that contactor M; sends phases A and B straight to the motor and contactor M, reverses
them; phase A would be shorted to phase B and vice versa. Obviously, this is a bad control
system design!

To prevent this occurrence from happening, we can design the circuit so that the energiza-
tion of one contactor prevents the energization of the other. This is called interlocking, and it
is accomplished through the use of auxiliary contacts on each contactor, as such:
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Ll L2
forward M2 M1 oL
| JT 4 1 O 3 /H/
reverse
M1 M2
A 5 2 M
/

Now, when M; is energized, the normally-closed auxiliary contact on the second rung will be
open, thus preventing M, from being energized, even if the "Reverse” pushbutton is actuated.
Likewise, M;’s energization is prevented when M is energized. Note, as well, how additional
wire numbers (4 and 5) were added to reflect the wiring changes.

It should be noted that this is not the only way to interlock contactors to prevent a short-
circuit condition. Some contactors come equipped with the option of a mechanical interlock: a
lever joining the armatures of two contactors together so that they are physically prevented
from simultaneous closure. For additional safety, electrical interlocks may still be used, and
due to the simplicity of the circuit there is no good reason not to employ them in addition to
mechanical interlocks.

e REVIEW:

e Switch contacts installed in a rung of ladder logic designed to interrupt a circuit if cer-
tain physical conditions are not met are called permissive contacts, because the system
requires permission from these inputs to activate.

e Switch contacts designed to prevent a control system from taking two incompatible ac-
tions at once (such as powering an electric motor forward and backward simultaneously)
are called interlocks.

6.4 Motor control circuits

The interlock contacts installed in the previous section’s motor control circuit work fine, but
the motor will run only as long as each pushbutton switch is held down. If we wanted to keep
the motor running even after the operator takes his or her hand off the control switch(es),
we could change the circuit in a couple of different ways: we could replace the pushbutton
switches with toggle switches, or we could add some more relay logic to “latch” the control
circuit with a single, momentary actuation of either switch. Let’s see how the second approach
is implemented, since it is commonly used in industry:
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L, L,
forward
M2 M1 OL
1 4 | 1 N\ 3 |
- 1F O—1f
M1
| |
[ |
reverse
M1 M2
1 5 | 2 N\
; /{/r _/
M2
| |

When the "Forward” pushbutton is actuated, M; will energize, closing the normally-open
auxiliary contact in parallel with that switch. When the pushbutton is released, the closed M;
auxiliary contact will maintain current to the coil of M, thus latching the "Forward” circuit in
the ”on” state. The same sort of thing will happen when the "Reverse” pushbutton is pressed.
These parallel auxiliary contacts are sometimes referred to as seal-in contacts, the word "seal”
meaning essentially the same thing as the word latch.

However, this creates a new problem: how to stop the motor! As the circuit exists right now,
the motor will run either forward or backward once the corresponding pushbutton switch is
pressed, and will continue to run as long as there is power. To stop either circuit (forward or
backward), we require some means for the operator to interrupt power to the motor contactors.
We'll call this new switch, Stop:

L, Lo
stop forward M2 M1 oL
6 e 4 | 1 N\ 3 |
A—O—1F
M1
| |
6 R
reverse
M1 M2
5 1x2
6 .. /T U
M2
5 | |
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Now, if either forward or reverse circuits are latched, they may be “unlatched” by momen-
tarily pressing the "Stop” pushbutton, which will open either forward or reverse circuit, de-
energizing the energized contactor, and returning the seal-in contact to its normal (open) state.
The "Stop” switch, having normally-closed contacts, will conduct power to either forward or re-
verse circuits when released.

So far, so good. Let’s consider another practical aspect of our motor control scheme before we
quit adding to it. If our hypothetical motor turned a mechanical load with a lot of momentum,
such as a large air fan, the motor might continue to coast for a substantial amount of time
after the stop button had been pressed. This could be problematic if an operator were to try
to reverse the motor direction without waiting for the fan to stop turning. If the fan was
still coasting forward and the "Reverse” pushbutton was pressed, the motor would struggle to
overcome that inertia of the large fan as it tried to begin turning in reverse, drawing excessive
current and potentially reducing the life of the motor, drive mechanisms, and fan. What we
might like to have is some kind of a time-delay function in this motor control system to prevent
such a premature startup from happening.

Let’s begin by adding a couple of time-delay relay coils, one in parallel with each motor
contactor coil. If we use contacts that delay returning to their normal state, these relays will
provide us a "memory” of which direction the motor was last powered to turn. What we want
each time-delay contact to do is to open the starting-switch leg of the opposite rotation circuit
for several seconds, while the fan coasts to a halt.

Ll L2
StOp forward M2 M1 oL
R 6 | 7 TD2 4 1 3

M1 TD1
| |
or—11
reverse
M1 M2
6l <8 D1 5 2
M2 TD2
6 | |

If the motor has been running in the forward direction, both M; and TD; will have been
energized. This being the case, the normally-closed, timed-closed contact of TD; between wires
8 and 5 will have immediately opened the moment TD; was energized. When the stop button
is pressed, contact TD; waits for the specified amount of time before returning to its normally-
closed state, thus holding the reverse pushbutton circuit open for the duration so M, can’t
be energized. When TD; times out, the contact will close and the circuit will allow M, to be
energized, if the reverse pushbutton is pressed. In like manner, TD, will prevent the "Forward”
pushbutton from energizing M; until the prescribed time delay after M, (and TDs) have been
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de-energized.

The careful observer will notice that the time-interlocking functions of TD; and TD; ren-
der the M; and M; interlocking contacts redundant. We can get rid of auxiliary contacts M;
and M; for interlocks and just use TD; and TDy’s contacts, since they immediately open when
their respective relay coils are energized, thus "locking out” one contactor if the other is ener-
gized. Each time delay relay will serve a dual purpose: preventing the other contactor from
energizing while the motor is running, and preventing the same contactor from energizing un-
til a prescribed time after motor shutdown. The resulting circuit has the advantage of being
simpler than the previous example:

I-l I-2
stop forward M1 oL
Ll 6 1 4 TD2 1 3
. AKX 2 * 0—4 /{/i/

M1 TD1
| |

6 | ]

reverse

L L5 DL g 2
M2 TD2
| |

6 | ]

e REVIEW:

e Motor contactor (or ”starter”) coils are typically designated by the letter "M” in ladder
logic diagrams.

e Continuous motor operation with a momentary ”start” switch is possible if a normally-
open “seal-in” contact from the contactor is connected in parallel with the start switch, so
that once the contactor is energized it maintains power to itself and keeps itself "latched”
on.

e Time delay relays are commonly used in large motor control circuits to prevent the motor
from being started (or reversed) until a certain amount of time has elapsed from an event.

6.5 Fail-safe design

Logic circuits, whether comprised of electromechanical relays or solid-state gates, can be built
in many different ways to perform the same functions. There is usually no one "correct” way to
design a complex logic circuit, but there are usually ways that are better than others.
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In control systems, safety is (or at least should be) an important design priority. If there
are multiple ways in which a digital control circuit can be designed to perform a task, and one
of those ways happens to hold certain advantages in safety over the others, then that design is
the better one to choose.

Let’s take a look at a simple system and consider how it might be implemented in relay
logic. Suppose that a large laboratory or industrial building is to be equipped with a fire alarm
system, activated by any one of several latching switches installed throughout the facility.
The system should work so that the alarm siren will energize if any one of the switches is
actuated. At first glance it seems as though the relay logic should be incredibly simple: just
use normally-open switch contacts and connect them all in parallel with each other:

Ly L,
switch 1 siren
A N
switch 2

'r—/.—v

switch 3
7

switch 4

I/

Essentially, this is the OR logic function implemented with four switch inputs. We could
expand this circuit to include any number of switch inputs, each new switch being added to the
parallel network, but I'll limit it to four in this example to keep things simple. At any rate, it
is an elementary system and there seems to be little possibility of trouble.

Except in the event of a wiring failure, that is. The nature of electric circuits is such that
“open” failures (open switch contacts, broken wire connections, open relay coils, blown fuses,
etc.) are statistically more likely to occur than any other type of failure. With that in mind, it
makes sense to engineer a circuit to be as tolerant as possible to such a failure. Let’s suppose
that a wire connection for Switch #2 were to fail open:
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If this failure were to occur, the result would be that Switch #2 would no longer energize the
siren if actuated. This, obviously, is not good in a fire alarm system. Unless the system were
regularly tested (a good idea anyway), no one would know there was a problem until someone
tried to use that switch in an emergency.

What if the system were re-engineered so as to sound the alarm in the event of an open
failure? That way, a failure in the wiring would result in a false alarm, a scenario much more
preferable than that of having a switch silently fail and not function when needed. In order
to achieve this design goal, we would have to re-wire the switches so that an open contact
sounded the alarm, rather than a closed contact. That being the case, the switches will have to
be normally-closed and in series with each other, powering a relay coil which then activates a
normally-closed contact for the siren:

Ly L,
. . CR1
switch 1 switch 3
o5 o5 o5 o5 m
switch 2 switch 4 ~
CR1 siren

|
4 \
When all switches are unactuated (the regular operating state of this system), relay CR;
will be energized, thus keeping contact CR; open, preventing the siren from being powered.
However, if any of the switches are actuated, relay CR; will de-energize, closing contact CR;
and sounding the alarm. Also, if there is a break in the wiring anywhere in the top rung of the
circuit, the alarm will sound. When it is discovered that the alarm is false, the workers in the
facility will know that something failed in the alarm system and that it needs to be repaired.
Granted, the circuit is more complex than it was before the addition of the control relay, and
the system could still fail in the ”silent” mode with a broken connection in the bottom rung,
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but it’s still a safer design than the original circuit, and thus preferable from the standpoint of
safety.

This design of circuit is referred to as fail-safe, due to its intended design to default to
the safest mode in the event of a common failure such as a broken connection in the switch
wiring. Fail-safe design always starts with an assumption as to the most likely kind of wiring or
component failure, and then tries to configure things so that such a failure will cause the circuit
to act in the safest way, the “safest way” being determined by the physical characteristics of
the process.

Take for example an electrically-actuated (solenoid) valve for turning on cooling water to
a machine. Energizing the solenoid coil will move an armature which then either opens or
closes the valve mechanism, depending on what kind of valve we specify. A spring will return
the valve to its normal” position when the solenoid is de-energized. We already know that
an open failure in the wiring or solenoid coil is more likely than a short or any other type of
failure, so we should design this system to be in its safest mode with the solenoid de-energized.

If it’s cooling water we’re controlling with this valve, chances are it is safer to have the
cooling water turn on in the event of a failure than to shut off, the consequences of a machine
running without coolant usually being severe. This means we should specify a valve that turns
on (opens up) when de-energized and turns off (closes down) when energized. This may seem
“backwards” to have the valve set up this way, but it will make for a safer system in the end.

One interesting application of fail-safe design is in the power generation and distribution
industry, where large circuit breakers need to be opened and closed by electrical control sig-
nals from protective relays. If a 50/51 relay (instantaneous and time overcurrent) is going to
command a circuit breaker to trip (open) in the event of excessive current, should we design it
so that the relay closes a switch contact to send a "trip” signal to the breaker, or opens a switch
contact to interrupt a regularly “on” signal to initiate a breaker trip? We know that an open
connection will be the most likely to occur, but what is the safest state of the system: breaker
open or breaker closed?

At first, it would seem that it would be safer to have a large circuit breaker trip (open up
and shut off power) in the event of an open fault in the protective relay control circuit, just
like we had the fire alarm system default to an alarm state with any switch or wiring failure.
However, things are not so simple in the world of high power. To have a large circuit breaker
indiscriminately trip open is no small matter, especially when customers are depending on
the continued supply of electric power to supply hospitals, telecommunications systems, water
treatment systems, and other important infrastructures. For this reason, power system engi-
neers have generally agreed to design protective relay circuits to output a closed contact signal
(power applied) to open large circuit breakers, meaning that any open failure in the control
wiring will go unnoticed, simply leaving the breaker in the status quo position.

Is this an ideal situation? Of course not. If a protective relay detects an overcurrent condi-
tion while the control wiring is failed open, it will not be able to trip open the circuit breaker.
Like the first fire alarm system design, the "silent” failure will be evident only when the system
is needed. However, to engineer the control circuitry the other way — so that any open failure
would immediately shut the circuit breaker off, potentially blacking out large potions of the
power grid — really isn’t a better alternative.

An entire book could be written on the principles and practices of good fail-safe system
design. At least here, you know a couple of the fundamentals: that wiring tends to fail open
more often than shorted, and that an electrical control system’s (open) failure mode should be
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such that it indicates and/or actuates the real-life process in the safest alternative mode. These
fundamental principles extend to non-electrical systems as well: identify the most common
mode of failure, then engineer the system so that the probable failure mode places the system
in the safest condition.

e REVIEW:

e The goal of fail-safe design is to make a control system as tolerant as possible to likely
wiring or component failures.

e The most common type of wiring and component failure is an “open” circuit, or broken
connection. Therefore, a fail-safe system should be designed to default to its safest mode
of operation in the case of an open circuit.

6.6 Programmable logic controllers

Before the advent of solid-state logic circuits, logical control systems were designed and built
exclusively around electromechanical relays. Relays are far from obsolete in modern design,
but have been replaced in many of their former roles as logic-level control devices, relegated
most often to those applications demanding high current and/or high voltage switching.

Systems and processes requiring "on/off” control abound in modern commerce and industry,
but such control systems are rarely built from either electromechanical relays or discrete logic
gates. Instead, digital computers fill the need, which may be programmed to do a variety of
logical functions.

In the late 1960’s an American company named Bedford Associates released a computing
device they called the MODICON. As an acronym, it meant Modular Digital Controller, and
later became the name of a company division devoted to the design, manufacture, and sale
of these special-purpose control computers. Other engineering firms developed their own ver-
sions of this device, and it eventually came to be known in non-proprietary terms as a PLC, or
Programmable Logic Controller. The purpose of a PLC was to directly replace electromechan-
ical relays as logic elements, substituting instead a solid-state digital computer with a stored
program, able to emulate the interconnection of many relays to perform certain logical tasks.

A PLC has many ”input” terminals, through which it interprets "high” and "low” logical
states from sensors and switches. It also has many output terminals, through which it out-
puts “high” and "low” signals to power lights, solenoids, contactors, small motors, and other
devices lending themselves to on/off control. In an effort to make PLCs easy to program, their
programming language was designed to resemble ladder logic diagrams. Thus, an industrial
electrician or electrical engineer accustomed to reading ladder logic schematics would feel com-
fortable programming a PLC to perform the same control functions.

PLCs are industrial computers, and as such their input and output signals are typically 120
volts AC, just like the electromechanical control relays they were designed to replace. Although
some PLCs have the ability to input and output low-level DC voltage signals of the magnitude
used in logic gate circuits, this is the exception and not the rule.

Signal connection and programming standards vary somewhat between different models of
PLC, but they are similar enough to allow a "generic” introduction to PLC programming here.
The following illustration shows a simple PLC, as it might appear from a front view. Two screw
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terminals provide connection to 120 volts AC for powering the PLC’s internal circuitry, labeled
L1 and L2. Six screw terminals on the left-hand side provide connection to input devices, each
terminal representing a different input "channel” with its own "X” label. The lower-left screw
terminal is a "Common” connection, which is generally connected to L2 (neutral) of the 120
VAC power source.

@oX1 % ,% Y10@
@o X2 Y20@
@o X3 Y30@
@o X4 PLC Y40@
@o X5 Y50@
@©o X6 Y60@
@ Conmon ng;:mmg Source @

Inside the PLC housing, connected between each input terminal and the Common terminal,
is an opto-isolator device (Light-Emitting Diode) that provides an electrically isolated “high”
logic signal to the computer’s circuitry (a photo-transistor interprets the LED’s light) when
there is 120 VAC power applied between the respective input terminal and the Common termi-
nal. An indicating LED on the front panel of the PLC gives visual indication of an "energized”
input:

L, L,
_.,‘_@_& @ D vio@
@ox2 - L2_ Y20@
— Dox3 Input X1 energlze\?i3 @
V) |@oxa FLE Y40Q
Y @ox5 Y50@
\ @o X6 Y60@
F%@mn P%O:mmg Source@

Output signals are generated by the PLC’s computer circuitry activating a switching device
(transistor, TRIAC, or even an electromechanical relay), connecting the "Source” terminal to
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any of the ”Y-” labeled output terminals. The "Source” terminal, correspondingly, is usually
connected to the L1 side of the 120 VAC power source. As with each input, an indicating LED
on the front panel of the PLC gives visual indication of an "energized” output:

@oX1 ?1 ,% Qr—' \—

@o X2 Y20Q

@ox3 300| =
Q@oX4 PLC ,JAv400 <
@oX5 y50@| [o-9]

Output Y1 energized
@ox6 " 92600

Programming
@ Conmon —— Source @'—‘

In this way, the PLC is able to interface with real-world devices such as switches and
solenoids.

The actual logic of the control system is established inside the PL.C by means of a computer
program. This program dictates which output gets energized under which input conditions.
Although the program itself appears to be a ladder logic diagram, with switch and relay sym-
bols, there are no actual switch contacts or relay coils operating inside the PLC to create the
logical relationships between input and output. These are imaginary contacts and coils, if
you will. The program is entered and viewed via a personal computer connected to the PLC’s
programming port.

Consider the following circuit and PLC program:
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When the pushbutton switch is unactuated (unpressed), no power is sent to the X1 input of
the PLC. Following the program, which shows a normally-open X1 contact in series with a Y1
coil, no "power” will be sent to the Y1 coil. Thus, the PLC’s Y1 output remains de-energized,
and the indicator lamp connected to it remains dark.

If the pushbutton switch is pressed, however, power will be sent to the PLC’s X1 input. Any
and all X1 contacts appearing in the program will assume the actuated (non-normal) state,
as though they were relay contacts actuated by the energizing of a relay coil named "X1”. In
this case, energizing the X1 input will cause the normally-open X1 contact will ”close,” sending
“power” to the Y1 coil. When the Y1 coil of the program ”energizes,” the real Y1 output will
become energized, lighting up the lamp connected to it:
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It must be understood that the X1 contact, Y1 coil, connecting wires, and "power” appearing
in the personal computer’s display are all virtual. They do not exist as real electrical compo-
nents. They exist as commands in a computer program — a piece of software only — that just
happens to resemble a real relay schematic diagram.

Equally important to understand is that the personal computer used to display and edit
the PLC’s program is not necessary for the PLC’s continued operation. Once a program has
been loaded to the PLC from the personal computer, the personal computer may be unplugged
from the PLC, and the PLC will continue to follow the programmed commands. I include the
personal computer display in these illustrations for your sake only, in aiding to understand the
relationship between real-life conditions (switch closure and lamp status) and the program’s
status ("power” through virtual contacts and virtual coils).

The true power and versatility of a PLC is revealed when we want to alter the behavior
of a control system. Since the PLC is a programmable device, we can alter its behavior by
changing the commands we give it, without having to reconfigure the electrical components
connected to it. For example, suppose we wanted to make this switch-and-lamp circuit function
in an inverted fashion: push the button to make the lamp turn off, and release it to make it
turn on. The "hardware” solution would require that a normally-closed pushbutton switch be
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substituted for the normally-open switch currently in place. The ”software” solution is much

easier: just alter the program so that contact X1 is normally-closed rather than normally-open.

In the following illustration, we have the altered system shown in the state where the
pushbutton is unactuated (not being pressed):
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In this next illustration, the switch is shown actuated (pressed):
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One of the advantages of implementing logical control in software rather than in hardware
is that input signals can be re-used as many times in the program as is necessary. For example,
take the following circuit and program, designed to energize the lamp if at least two of the three
pushbutton switches are simultaneously actuated:
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To build an equivalent circuit using electromechanical relays, three relays with two normally-
open contacts each would have to be used, to provide two contacts per input switch. Using a
PLC, however, we can program as many contacts as we wish for each "X” input without adding
additional hardware, since each input and each output is nothing more than a single bit in the
PLC’s digital memory (either 0 or 1), and can be recalled as many times as necessary.

Furthermore, since each output in the PLC is nothing more than a bit in its memory as
well, we can assign contacts in a PLC program ”actuated” by an output (Y) status. Take for
instance this next system, a motor start-stop control circuit:
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The pushbutton switch connected to input X1 serves as the "Start” switch, while the switch
connected to input X2 serves as the "Stop.” Another contact in the program, named Y1, uses
the output coil status as a seal-in contact, directly, so that the motor contactor will continue to
be energized after the "Start” pushbutton switch is released. You can see the normally-closed
contact X2 appear in a colored block, showing that it is in a closed (“electrically conducting”)
state.

If we were to press the ”Start” button, input X1 would energize, thus “closing” the X1 contact
in the program, sending "power” to the Y1 "coil,” energizing the Y1 output and applying 120
volt AC power to the real motor contactor coil. The parallel Y1 contact will also "close,” thus
latching the ”circuit” in an energized state:
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Now, if we release the "Start” pushbutton, the normally-open X1 ”contact” will return to its
“open” state, but the motor will continue to run because the Y1 seal-in "contact” continues to
provide "continuity” to "power” coil Y1, thus keeping the Y1 output energized:
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To stop the motor, we must momentarily press the "Stop” pushbutton, which will energize
the X2 input and “open” the normally-closed "contact,” breaking continuity to the Y1 "coil:”
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When the ”Stop” pushbutton is released, input X2 will de-energize, returning “contact” X2 to
its normal, "closed” state. The motor, however, will not start again until the ”Start” pushbutton
is actuated, because the ”seal-in” of Y1 has been lost:
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An important point to make here is that fail-safe design is just as important in PLC-
controlled systems as it is in electromechanical relay-controlled systems. One should always
consider the effects of failed (open) wiring on the device or devices being controlled. In this
motor control circuit example, we have a problem: if the input wiring for X2 (the ”"Stop” switch)
were to fail open, there would be no way to stop the motor!

The solution to this problem is a reversal of logic between the X2 "contact” inside the PLC
program and the actual ”Stop” pushbutton switch:
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When the normally-closed ”Stop” pushbutton switch is unactuated (not pressed), the PLC’s
X2 input will be energized, thus “closing” the X2 ”contact” inside the program. This allows
the motor to be started when input X1 is energized, and allows it to continue to run when the
”Start” pushbutton is no longer pressed. When the "Stop” pushbutton is actuated, input X2
will de-energize, thus "opening” the X2 "contact” inside the PLC program and shutting off the
motor. So, we see there is no operational difference between this new design and the previous
design.

However, if the input wiring on input X2 were to fail open, X2 input would de-energize in
the same manner as when the ”"Stop” pushbutton is pressed. The result, then, for a wiring
failure on the X2 input is that the motor will immediately shut off. This is a safer design
than the one previously shown, where a ”"Stop” switch wiring failure would have resulted in an
inability to turn off the motor.

In addition to input (X) and output (Y) program elements, PL.Cs provide "internal” coils and
contacts with no intrinsic connection to the outside world. These are used much the same as
“control relays” (CR1, CR2, etc.) are used in standard relay circuits: to provide logic signal
inversion when necessary.

To demonstrate how one of these “internal” relays might be used, consider the following
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example circuit and program, designed to emulate the function of a three-input NAND gate.
Since PLC program elements are typically designed by single letters, I will call the internal
control relay ”C1” rather than "CR1” as would be customary in a relay control circuit:
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In this circuit, the lamp will remain lit so long as any of the pushbuttons remain unactuated
(unpressed). To make the lamp turn off, we will have to actuate (press) all three switches, like
this:



6.6. PROGRAMMABLE LOGIC CONTROLLERS 169

s % % Y10@1+——
._—¢—|T__@.X2 Y20@| lampis

——{@ex3 vzom|
@o x4 PLC Y40@
@o X5 Y50@
@o X6 Y6 0@
Programming

’*@ Conmon m— Sour ce @

/
L

N
X1 X2 X3 Cl
C1 Y1

This section on programmable logic controllers illustrates just a small sample of their ca-
pabilities. As computers, PLCs can perform timing functions (for the equivalent of time-delay
relays), drum sequencing, and other advanced functions with far greater accuracy and reliabil-
ity than what is possible using electromechanical logic devices. Most PLCs have the capacity
for far more than six inputs and six outputs. The following photograph shows several input
and output modules of a single Allen-Bradley PLC.
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With each module having sixteen "points” of either input or output, this PLC has the ability
to monitor and control dozens of devices. Fit into a control cabinet, a PLC takes up little room,
especially considering the equivalent space that would be needed by electromechanical relays
to perform the same functions:

One advantage of PLCs that simply cannot be duplicated by electromechanical relays is
remote monitoring and control via digital computer networks. Because a PLC is nothing more
than a special-purpose digital computer, it has the ability to communicate with other comput-
ers rather easily. The following photograph shows a personal computer displaying a graphic
image of a real liquid-level process (a pumping, or "lift,” station for a municipal wastewater
treatment system) controlled by a PLC. The actual pumping station is located miles away from
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the personal computer display:

6.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Roger Hollingsworth (May 2003): Suggested a way to make the PL.C motor control circuit
fail-safe.
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0+1=1
1+0=1
1+1=1

Rules of addition for Boolean quantities

"Gee Toto, I don’t think we’re in Kansas anymore!”
Dorothy, in The Wizard of Oz

7.1 Introduction
Mathematical rules are based on the defining limits we place on the particular numerical

quantities dealt with. When we say that 1 + 1 =2 or 3 + 4 = 7, we are implying the use of
integer quantities: the same types of numbers we all learned to count in elementary education.

173
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What most people assume to be self-evident rules of arithmetic — valid at all times and for all
purposes — actually depend on what we define a number to be.

For instance, when calculating quantities in AC circuits, we find that the "real” number
quantities which served us so well in DC circuit analysis are inadequate for the task of repre-
senting AC quantities. We know that voltages add when connected in series, but we also know
that it is possible to connect a 3-volt AC source in series with a 4-volt AC source and end up
with 5 volts total voltage (3 + 4 = 5)! Does this mean the inviolable and self-evident rules of
arithmetic have been violated? No, it just means that the rules of "real” numbers do not apply
to the kinds of quantities encountered in AC circuits, where every variable has both a magni-
tude and a phase. Consequently, we must use a different kind of numerical quantity, or object,
for AC circuits (complex numbers, rather than real numbers), and along with this different
system of numbers comes a different set of rules telling us how they relate to one another.

An expression such as "3 + 4 = 5” is nonsense within the scope and definition of real num-
bers, but it fits nicely within the scope and definition of complex numbers (think of a right
triangle with opposite and adjacent sides of 3 and 4, with a hypotenuse of 5). Because complex
numbers are two-dimensional, they are able to "add” with one another trigonometrically as
single-dimension "real” numbers cannot.

Logic is much like mathematics in this respect: the so-called "Laws” of logic depend on how
we define what a proposition is. The Greek philosopher Aristotle founded a system of logic
based on only two types of propositions: true and false. His bivalent (two-mode) definition of
truth led to the four foundational laws of logic: the Law of Identity (A is A); the Law of Non-
contradiction (A is not non-A); the Law of the Excluded Middle (either A or non-A); and the Law
of Rational Inference. These so-called Laws function within the scope of logic where a propo-
sition is limited to one of two possible values, but may not apply in cases where propositions
can hold values other than "true” or “false.” In fact, much work has been done and continues
to be done on "multivalued,” or fuzzy logic, where propositions may be true or false to a limited
degree. In such a system of logic, "Laws” such as the Law of the Excluded Middle simply do
not apply, because they are founded on the assumption of bivalence. Likewise, many premises
which would violate the Law of Non-contradiction in Aristotelian logic have validity in "fuzzy”
logic. Again, the defining limits of propositional values determine the Laws describing their
functions and relations.

The English mathematician George Boole (1815-1864) sought to give symbolic form to Aris-
totle’s system of logic. Boole wrote a treatise on the subject in 1854, titled An Investigation of
the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabil-
ities, which codified several rules of relationship between mathematical quantities limited to
one of two possible values: true or false, 1 or 0. His mathematical system became known as
Boolean algebra.

All arithmetic operations performed with Boolean quantities have but one of two possible
outcomes: either 1 or 0. There is no such thing as ”2” or ”-1” or ”1/2” in the Boolean world. Itis a
world in which all other possibilities are invalid by fiat. As one might guess, this is not the kind
of math you want to use when balancing a checkbook or calculating current through a resistor.
However, Claude Shannon of MIT fame recognized how Boolean algebra could be applied to
on-and-off circuits, where all signals are characterized as either “high” (1) or "low” (0). His
1938 thesis, titled A Symbolic Analysis of Relay and Switching Circuits, put Boole’s theoretical
work to use in a way Boole never could have imagined, giving us a powerful mathematical tool
for designing and analyzing digital circuits.
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In this chapter, you will find a lot of similarities between Boolean algebra and "normal” al-
gebra, the kind of algebra involving so-called real numbers. Just bear in mind that the system
of numbers defining Boolean algebra is severely limited in terms of scope, and that there can
only be one of two possible values for any Boolean variable: 1 or 0. Consequently, the "Laws”
of Boolean algebra often differ from the "Laws” of real-number algebra, making possible such
statements as 1 + 1 = 1, which would normally be considered absurd. Once you comprehend
the premise of all quantities in Boolean algebra being limited to the two possibilities of 1 and
0, and the general philosophical principle of Laws depending on quantitative definitions, the
“nonsense” of Boolean algebra disappears.

It should be clearly understood that Boolean numbers are not the same as binary numbers.
Whereas Boolean numbers represent an entirely different system of mathematics from real
numbers, binary is nothing more than an alternative notation for real numbers. The two are
often confused because both Boolean math and binary notation use the same two ciphers: 1
and 0. The difference is that Boolean quantities are restricted to a single bit (either 1 or 0),
whereas binary numbers may be composed of many bits adding up in place-weighted form to
a value of any finite size. The binary number 10011, ("nineteen”) has no more place in the
Boolean world than the decimal number 214 ("two”) or the octal number 325 ("twenty-six”).

7.2 Boolean arithmetic

Let us begin our exploration of Boolean algebra by adding numbers together:

0+0=0
0+1=1
1+0=1
1+1=1

The first three sums make perfect sense to anyone familiar with elementary addition. The
last sum, though, is quite possibly responsible for more confusion than any other single state-
ment in digital electronics, because it seems to run contrary to the basic principles of math-
ematics. Well, it does contradict principles of addition for real numbers, but not for Boolean
numbers. Remember that in the world of Boolean algebra, there are only two possible values
for any quantity and for any arithmetic operation: 1 or 0. There is no such thing as ”2” within
the scope of Boolean values. Since the sum ”1 + 1” certainly isn’t 0, it must be 1 by process of
elimination.

It does not matter how many or few terms we add together, either. Consider the following
sums:

0O0+1+1=1
1+1+1=1
0O+1+1+1=1

1+0+1+1+1-=1

Take a close look at the two-term sums in the first set of equations. Does that pattern look
familiar to you? It should! It is the same pattern of 1’s and 0’s as seen in the truth table for an
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OR gate. In other words, Boolean addition corresponds to the logical function of an "OR” gate,
as well as to parallel switch contacts:

0+0=0
0 0 0
‘/. N~
ODO o
0
o
0+1=1
0 0 1
T
1 7SN
1
1+0=1
D e
1 q
O N
0
o
1+1=1
1 — o 4
1 N
1
I —

There is no such thing as subtraction in the realm of Boolean mathematics. Subtraction
implies the existence of negative numbers: 5 - 3 is the same thing as 5 + (-3), and in Boolean
algebra negative quantities are forbidden. There is no such thing as division in Boolean mathe-
matics, either, since division is really nothing more than compounded subtraction, in the same
way that multiplication is compounded addition.

Multiplication is valid in Boolean algebra, and thankfully it is the same as in real-number
algebra: anything multiplied by 0 is 0, and anything multiplied by 1 remains unchanged:

0x0=0

0x1=0
1x0=0
1 x1=1

This set of equations should also look familiar to you: it is the same pattern found in the
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truth table for an AND gate. In other words, Boolean multiplication corresponds to the logical
function of an ”AND?” gate, as well as to series switch contacts:

0x0=0

0 — 0 0 0

O / N~

0_ : VN
0x1=0

0 o 1 0

O N~

1_ : NN
1x0=0

1 1 0 0

0_ :O NN
1 x1=1

1 1 1

1 ] N~
1
l 1 N
Like "normal” algebra, Boolean algebra uses alphabetical letters to denote variables. Un-
like "normal” algebra, though, Boolean variables are always CAPITAL letters, never lower-
case. Because they are allowed to possess only one of two possible values, either 1 or 0, each
and every variable has a complement: the opposite of its value. For example, if variable "A” has

a value of 0, then the complement of A has a value of 1. Boolean notation uses a bar above the
variable character to denote complementation, like this:

If: A=0
Then: A=1
If: A=1
Then: A=0

In written form, the complement of ”A” denoted as "A-not” or A-bar”. Sometimes a "prime”
symbol is used to represent complementation. For example, A’ would be the complement of A,
much the same as using a prime symbol to denote differentiation in calculus rather than the
fractional notation d/dt. Usually, though, the "bar” symbol finds more widespread use than the
“prime” symbol, for reasons that will become more apparent later in this chapter.

Boolean complementation finds equivalency in the form of the NOT gate, or a normally-
closed switch or relay contact:
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If: =0

Then: A=1 _

A

O AD% l N~
If: =1

Then: A=0 _

A

0

O
=

A
14l><k

The basic definition of Boolean quantities has led to the simple rules of addition and mul-
tiplication, and has excluded both subtraction and division as valid arithmetic operations. We
have a symbology for denoting Boolean variables, and their complements. In the next section
we will proceed to develop Boolean identities.

e REVIEW:

Boolean addition is equivalent to the OR logic function, as well as parallel switch con-
tacts.

Boolean multiplication is equivalent to the AND logic function, as well as series switch
contacts.

Boolean complementation is equivalent to the NOT logic function, as well as normally-
closed relay contacts.

7.3 Boolean algebraic identities

In mathematics, an identity is a statement true for all possible values of its variable or vari-
ables. The algebraic identity of x + 0 = x tells us that anything (x) added to zero equals the
original "anything,” no matter what value that anything” (x) may be. Like ordinary algebra,
Boolean algebra has its own unique identities based on the bivalent states of Boolean variables.
The first Boolean identity is that the sum of anything and zero is the same as the original
“anything.” This identity is no different from its real-number algebraic equivalent:

A+0=A
A A A
|| N~
ODA N o
0
_/._
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No matter what the value of A, the output will always be the same: when A=1, the output
will also be 1; when A=0, the output will also be 0.

The next identity is most definitely different from any seen in normal algebra. Here we
discover that the sum of anything and one is one:

A+1=1

A
A N~
> HEo
1

&

No matter what the value of A, the sum of A and 1 will always be 1. In a sense, the "1”
signal overrides the effect of A on the logic circuit, leaving the output fixed at a logic level of 1.

Next, we examine the effect of adding A and A together, which is the same as connecting
both inputs of an OR gate to each other and activating them with the same signal:

A+ A=A
A A
T o CH

A

In real-number algebra, the sum of two identical variables is twice the original variable’s
value (x + x = 2x), but remember that there is no concept of ”2” in the world of Boolean math,
only 1 and 0, so we cannot say that A + A = 2A. Thus, when we add a Boolean quantity to itself,
the sum is equal to the original quantity: 0 + 0=0,and 1+ 1 =1.

Introducing the uniquely Boolean concept of complementation into an additive identity, we
find an interesting effect. Since there must be one ”1” value between any variable and its
complement, and since the sum of any Boolean quantity and 1 is 1, the sum of a variable and
its complement must be 1:

) > CH
A A

Just as there are four Boolean additive identities (A+0, A+1, A+A, and A+A’), so there are
also four multiplicative identities: Ax0, Ax1, AxA, and AxA’. Of these, the first two are no
different from their equivalent expressions in regular algebra:
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OA =0

T o A

1A= A

1 A A
1 — N\ 7
A
A 1 /:\

The third multiplicative identity expresses the result of a Boolean quantity multiplied by
itself. In normal algebra, the product of a variable and itself is the square of that variable (3
x 3 = 3% = 9). However, the concept of “square” implies a quantity of 2, which has no meaning
in Boolean algebra, so we cannot say that A x A = A2. Instead, we find that the product of a
Boolean quantity and itself is the original quantity, since0 x0=0and 1x1=1:

AA = A

A A A
A N 7/
T e HE o
The fourth multiplicative identity has no equivalent in regular algebra because it uses the
complement of a variable, a concept unique to Boolean mathematics. Since there must be

one ”"0” value between any variable and its complement, and since the product of any Boolean
quantity and 0 is 0, the product of a variable and its complement must be 0:

AA =0
A A A A 0
T o Hio
A

To summarize, then, we have four basic Boolean identities for addition and four for multi-
plication:

Basic Boolean algebraic identities

Additive Multiplicative
A+0=A OA =0
A+1=1 1A = A
A+ A=A AA = A
A+A=1 AA = 0

Another identity having to do with complementation is that of the double complement: a
variable inverted twice. Complementing a variable twice (or any even number of times) results
in the original Boolean value. This is analogous to negating (multiplying by -1) in real-number
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algebra: an even number of negations cancel to leave the original value:

A=A

A — : A : = A CR1
(same) ’_{ 0
A \ / A
// N
CR1 (same) CR2

— 4

CR2

>

)

7.4 Boolean algebraic properties

Another type of mathematical identity, called a "property” or a "law,” describes how differing
variables relate to each other in a system of numbers. One of these properties is known as
the commutative property, and it applies equally to addition and multiplication. In essence,
the commutative property tells us we can reverse the order of variables that are either added
together or multiplied together without changing the truth of the expression:

Commutative property of addition

A+B=B+A

(same) B
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Commutative property of multiplication

AB = BA
] A B
o ., HF i
i: ) / (sarfe)

e

Along with the commutative properties of addition and multiplication, we have the associa-
tive property, again applying equally well to addition and multiplication. This property tells
us we can associate groups of added or multiplied variables together with parentheses without
altering the truth of the equations.

Associative property of addition

A+ (B+C =(A+B +C

A A
| | N\ 4
| O
C T B
(same)
C (same)
A l
A
C N\ 7/
O
B
C
| |
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Associative property of multiplication

A(BC) = (AB)C
A

p— HE e
}j} B C:|“

(same) _{ _{

Qi}j Lo

Lastly, we have the distributive property, illustrating how to expand a Boolean expression
formed by the product of a sum, and in reverse shows us how terms may be factored out of
Boolean sums-of-products:

Distributive property
A(B+ C = AB + AC

A—, AR L
- HHEAHeCH

L= e

(same)

A (sarlne) A . l

B = O

A A C

c— —

To summarize, here are the three basic properties: commutative, associative, and distribu-
tive.
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Basic Boolean algebraic properties

Additive Multiplicative
A+B=B+A AB = BA
A+ (B+C =(A+B +C A(BC) = (AB)C

A(B + C = AB + AC

7.5 Boolean rules for simplification

Boolean algebra finds its most practical use in the simplification of logic circuits. If we translate
a logic circuit’s function into symbolic (Boolean) form, and apply certain algebraic rules to the
resulting equation to reduce the number of terms and/or arithmetic operations, the simplified
equation may be translated back into circuit form for a logic circuit performing the same func-
tion with fewer components. If equivalent function may be achieved with fewer components,
the result will be increased reliability and decreased cost of manufacture.

To this end, there are several rules of Boolean algebra presented in this section for use in
reducing expressions to their simplest forms. The identities and properties already reviewed
in this chapter are very useful in Boolean simplification, and for the most part bear similarity
to many identities and properties of "normal” algebra. However, the rules shown in this section
are all unique to Boolean mathematics.

A+ AB = A
A A (same) A
A_ / S~V
— —A )—o
A_ A + AB NN
5 A
AB - (same)

1 e

This rule may be proven symbolically by factoring an ”A” out of the two terms, then applying
the rules of A + 1 = 1 and 1A = A to achieve the final result:
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A + AB
l Factoring A out of both terms
A(l + B)

l Applying identity A + 1 = 1

A(1)
l Applying identity 1A = A
A

Please note how the rule A + 1 = 1 was used to reduce the (B + 1) term to 1. When a rule
like A + 1 = 1”7 is expressed using the letter ”A”, it doesn’t mean it only applies to expressions
containing "A”. What the "A” stands for in a rule like A + 1 = 1 is any Boolean variable or
collection of variables. This is perhaps the most difficult concept for new students to master in
Boolean simplification: applying standardized identities, properties, and rules to expressions
not in standard form.

For instance, the Boolean expression ABC + 1 also reduces to 1 by means of the A + 1 =
1” identity. In this case, we recognize that the "A” term in the identity’s standard form can
represent the entire ”ABC” term in the original expression.

The next rule looks similar to the first on shown in this section, but is actually quite differ-
ent and requires a more clever proof:

A+ AB=A+B
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A + AB
l Applying the previous rule to expand Aterm
A+ AB = A
A+ AB + AB
l Factoring B out of 2™ and 3" terms

A+ B(A + A
l Applying identity A + A = 1

A + B(1)

l Applying identity 1A = A
+

A+ B

Note how the last rule (A + AB = A) is used to "un-simplify” the first A” term in the expres-
sion, changing the ”A” into an A + AB”. While this may seem like a backward step, it certainly
helped to reduce the expression to something simpler! Sometimes in mathematics we must
take "backward” steps to achieve the most elegant solution. Knowing when to take such a step
and when not to is part of the art-form of algebra, just as a victory in a game of chess almost
always requires calculated sacrifices.

Another rule involves the simplification of a product-of-sums expression:

(A+B)(A+C =A+ BC

A A A N
5, ninninE®Ss

& Ay (a0 | B | c |
c A C (s‘e}ne) - }— (same)

L/ A
A+BC On
B C
: -

And, the corresponding proof:
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(A+ B)(A+ 0O
l Distributing terms

AA + AC + AB + BC
l Applying identity AA = A

A+ AC + AB + BC
l Applying rule A + AB
tothe A + ACterm
A + AB + BC
l Applying rule A + AB
tothe A + ABterm

I
>

I
>

A + BC

To summarize, here are the three new rules of Boolean simplification expounded in this
section:

Useful Boolean rules for simplification

A+ AB = A
A+ AB=A+B
(A+B(A+C =A+ BC

7.6 Circuit simplification examples

Let’s begin with a semiconductor gate circuit in need of simplification. The ”"A,” ”"B,” and "C”
input signals are assumed to be provided from switches, sensors, or perhaps other gate circuits.
Where these signals originate is of no concern in the task of gate reduction.

A
B

Q

C——

g?u

Our first step in simplification must be to write a Boolean expression for this circuit. This
task is easily performed step by step if we start by writing sub-expressions at the output of each
gate, corresponding to the respective input signals for each gate. Remember that OR gates are
equivalent to Boolean addition, while AND gates are equivalent to Boolean multiplication. For
example, I'll write sub-expressions at the outputs of the first three gates:
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v

B+C

.

B

. .. then another sub-expression for the next gate:

A——— 7\ AB
B - Q

B+C

BC( B+C)

BC

Finally, the output ("Q”) is seen to be equal to the expression AB + BC(B + C):

A—— 1\ AB

. Q = AB + BC(B+Q)
B+C
C—0—
BO( B+C)

BC

oy)

Now that we have a Boolean expression to work with, we need to apply the rules of Boolean
algebra to reduce the expression to its simplest form (simplest defined as requiring the fewest
gates to implement):
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AB + BC(B + Q)
l Distributing terms

AB + BBC + BCC
Applying identity AA = A
l to 2nd and 3rd terms
AB + BC + BC
Applying identity A + A = A
l to 2nd and 3rd terms
AB + BC

l Factoring B out of terms

B(A + C

The final expression, B(A + C), is much simpler than the original, yet performs the same
function. If you would like to verify this, you may generate a truth table for both expressions
and determine Q’s status (the circuits’ output) for all eight logic-state combinations of A, B,
and C, for both circuits. The two truth tables should be identical.

Now, we must generate a schematic diagram from this Boolean expression. To do this,
evaluate the expression, following proper mathematical order of operations (multiplication be-
fore addition, operations inside parentheses before anything else), and draw gates for each
step. Remember again that OR gates are equivalent to Boolean addition, while AND gates are
equivalent to Boolean multiplication. In this case, we would begin with the sub-expression "A

+ C”, which is an OR gate:
ahly
C

The next step in evaluating the expression "B(A + C)” is to multiply (AND gate) the signal
B by the output of the previous gate (A + C):

A A+C
C - Q = B(A+C)
B— [

Obviously, this circuit is much simpler than the original, having only two logic gates instead
of five. Such component reduction results in higher operating speed (less delay time from input
signal transition to output signal transition), less power consumption, less cost, and greater
reliability.

Electromechanical relay circuits, typically being slower, consuming more electrical power to
operate, costing more, and having a shorter average life than their semiconductor counterparts,
benefit dramatically from Boolean simplification. Let’s consider an example circuit:
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L, L,
A Q
— 0
B A
—
C
A C

As before, our first step in reducing this circuit to its simplest form must be to develop a
Boolean expression from the schematic. The easiest way I've found to do this is to follow the
same steps I'd normally follow to reduce a series-parallel resistor network to a single, total
resistance. For example, examine the following resistor network with its resistors arranged
in the same connection pattern as the relay contacts in the former circuit, and corresponding
total resistance formula:

Rtotal
VWWA

RZ RS
R5 RG
MM —

Riota = Ru /T [(Re//Rg) = Ro] I (Rs - Re)

Remember that parallel contacts are equivalent to Boolean addition, while series contacts
are equivalent to Boolean multiplication. Write a Boolean expression for this relay contact cir-
cuit, following the same order of precedence that you would follow in reducing a series-parallel
resistor network to a total resistance. It may be helpful to write a Boolean sub-expression to
the left of each ladder "rung,” to help organize your expression-writing:
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Ll L2
A
A H &
B A
B( A+C) —{ - -
i
A C
ac H |

Q= A+ B(A+tC) + AC

Now that we have a Boolean expression to work with, we need to apply the rules of Boolean

algebra to reduce the expression to its simplest form (simplest defined as requiring the fewest
relay contacts to implement):

A+ B(A+ C + AC
l Distributing terms

A+ AB + BC + AC
Applyingrule A + AB = A
l to 1st and 2nd terms
A + BC + AC
Applyingrule A + AB = A
l to 1st and 3rd terms
A + BC

The more mathematically inclined should be able to see that the two steps employing the

rule A + AB = A” may be combined into a single step, the rule being expandable to: A + AB +
AC+AD+...=A"

A+ B(A+(C + AC
l Distributing terms

A+ AB + BC + AC

Applying (expanded) rule A + AB = A
l to 1st, 2nd, and 4th terms

A + BC

As you can see, the reduced circuit is much simpler than the original, yet performs the same
logical function:
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Sl

e REVIEW:

e To convert a gate circuit to a Boolean expression, label each gate output with a Boolean
sub-expression corresponding to the gates’ input signals, until a final expression is reached
at the last gate.

e To convert a Boolean expression to a gate circuit, evaluate the expression using standard
order of operations: multiplication before addition, and operations within parentheses
before anything else.

e To convert a ladder logic circuit to a Boolean expression, label each rung with a Boolean
sub-expression corresponding to the contacts’ input signals, until a final expression is
reached at the last coil or light. To determine proper order of evaluation, treat the con-
tacts as though they were resistors, and as if you were determining total resistance of the
series-parallel network formed by them. In other words, look for contacts that are either
directly in series or directly in parallel with each other first, then ”collapse” them into
equivalent Boolean sub-expressions before proceeding to other contacts.

e To convert a Boolean expression to a ladder logic circuit, evaluate the expression us-
ing standard order of operations: multiplication before addition, and operations within
parentheses before anything else.

7.7 The Exclusive-OR function

One element conspicuously missing from the set of Boolean operations is that of Exclusive-
OR. Whereas the OR function is equivalent to Boolean addition, the AND function to Boolean
multiplication, and the NOT function (inverter) to Boolean complementation, there is no direct
Boolean equivalent for Exclusive-OR. This hasn’t stopped people from developing a symbol to

represent it, though:
DL
B

This symbol is seldom used in Boolean expressions because the identities, laws, and rules
of simplification involving addition, multiplication, and complementation do not apply to it.
However, there is a way to represent the Exclusive-OR function in terms of OR and AND, as
has been shown in previous chapters: AB’ + A'B
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S nos

...Isequivalentto. ..

ADO B = AB + AB

As a Boolean equivalency, this rule may be helpful in simplifying some Boolean expressions.
Any expression following the AB’ + A’'B form (two AND gates and an OR gate) may be replaced
by a single Exclusive-OR gate.

7.8 DeMorgan’s Theorems

A mathematician named DeMorgan developed a pair of important rules regarding group com-
plementation in Boolean algebra. By group complementation, I'm referring to the complement
of a group of terms, represented by a long bar over more than one variable.

You should recall from the chapter on logic gates that inverting all inputs to a gate reverses
that gate’s essential function from AND to OR, or vice versa, and also inverts the output. So,
an OR gate with all inputs inverted (a Negative-OR gate) behaves the same as a NAND gate,
and an AND gate with all inputs inverted (a Negative-AND gate) behaves the same as a NOR
gate. DeMorgan’s theorems state the same equivalence in "backward” form: that inverting the
output of any gate results in the same function as the opposite type of gate (AND vs. OR) with
inverted inputs:
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A — >AB: B
B —

...Isequivalentto . ..

A
A
A+ B
B -
B
B =A+8B

A long bar extending over the term AB acts as a grouping symbol, and as such is entirely
different from the product of A and B independently inverted. In other words, (AB) is not
equal to A’'B’. Because the "prime” symbol (’) cannot be stretched over two variables like a bar
can, we are forced to use parentheses to make it apply to the whole term AB in the previous
sentence. A bar, however, acts as its own grouping symbol when stretched over more than one
variable. This has profound impact on how Boolean expressions are evaluated and reduced, as
we shall see.

DeMorgan’s theorem may be thought of in terms of breaking a long bar symbol. When
a long bar is broken, the operation directly underneath the break changes from addition to
multiplication, or vice versa, and the broken bar pieces remain over the individual variables.
To illustrate:

DeMorgan’s Theorems

break! break!

] l

NAND to Negative-OR NOR to Negative-AND

When multiple "layers” of bars exist in an expression, you may only break one bar at a time,
and it is generally easier to begin simplification by breaking the longest (uppermost) bar first.
To illustrate, let’s take the expression (A + (BC)’) and reduce it using DeMorgan’s Theorems:
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A
A R —
A + BC
B — BC
C_

Following the advice of breaking the longest (uppermost) bar first, I'll begin by breaking the
bar covering the entire expression as a first step:

A + BC
l Breaking longest bar
(addition changes to multiplication)
A BC _
Applying identity A = A
l to BC
ABC

As a result, the original circuit is reduced to a three-input AND gate with the A input

inverted:

A

B
C

| Y

— ABC

You should never break more than one bar in a single step, as illustrated here:

A + BC
l Breaking long bar between A and B;

|
Incorrect step: Breaking both bars between B and C

AB+C -
Applying identity A = A
l toBand C
Incorrect answer: AB + C
As tempting as it may be to conserve steps and break more than one bar at a time, it often
leads to an incorrect result, so don’t do it!

It is possible to properly reduce this expression by breaking the short bar first, rather than
the long bar first:
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>
3
s

: ‘

Breaking shortest bar
(multiplication changes to addition)
+ O
Applying associative property

to remove parentheses

>
+
|

Breaking long bar in two places,
between 1st and 2nd terms;
between 2nd and 3rd terms

b
ol

- Ul -— Ol -—

Applying igentityi = A
toBand C
ABC

The end result is the same, but more steps are required compared to using the first method,
where the longest bar was broken first. Note how in the third step we broke the long bar in two
places. This is a legitimate mathematical operation, and not the same as breaking two bars in
one step! The prohibition against breaking more than one bar in one step is not a prohibition
against breaking a bar in more than one place. Breaking in more than one place in a single
step is okay; breaking more than one bar in a single step is not.

You might be wondering why parentheses were placed around the sub-expression B’ + C’,
considering the fact that I just removed them in the next step. I did this to emphasize an
important but easily neglected aspect of DeMorgan’s theorem. Since a long bar functions as
a grouping symbol, the variables formerly grouped by a broken bar must remain grouped lest
proper precedence (order of operation) be lost. In this example, it really wouldn’t matter if I
forgot to put parentheses in after breaking the short bar, but in other cases it might. Consider
this example, starting with a different expression:

AB + CD

l Breaking bar in middle

Notice the grouping maintained
with parentheses ——» (‘AB) (CD)

l Breaking both bars in middle

Correct answer: (A + B)(C + D)
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AB + CD
l Breaking bar in middle

Parentheses omitted —— AB CD
l Breaking both bars in middle

Incorrect answer: A+ BC+ D

As you can see, maintaining the grouping implied by the complementation bars for this
expression is crucial to obtaining the correct answer.

Let’s apply the principles of DeMorgan’s theorems to the simplification of a gate circuit:

O m >

Y

As always, our first step in simplifying this circuit must be to generate an equivalent
Boolean expression. We can do this by placing a sub-expression label at the output of each
gate, as the inputs become known. Here’s the first step in this process:

oy}

Y

Next, we can label the outputs of the first NOR gate and the NAND gate. When dealing
with inverted-output gates, I find it easier to write an expression for the gate’s output without
the final inversion, with an arrow pointing to just before the inversion bubble. Then, at the
wire leading out of the gate (after the bubble), I write the full, complemented expression. This
helps ensure I don’t forget a complementing bar in the sub-expression, by forcing myself to
split the expression-writing task into two steps:
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A+BC

A+BC

O o >

Finally, we write an expression (or pair of expressions) for the last NOR gate:

Now, we reduce this expression using the identities, properties, rules, and theorems (De-
Morgan’s) of Boolean algebra:
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A + BC + AB
l Breaking longest bar
(A T BO) (AB) _
Applying identity A = A
l wherever double bars of

_equal length are found
(A + BQ) (AB)

l Distributive property
AAB + BCAB
Applying identity AA = A
to left term; applying identity
AA = 0Oto Band Biin right
term
AB + 0
l Applying identity A + 0 = A
AB

The equivalent gate circuit for this much-simplified expression is as follows:

Sl Doea

e REVIEW

e DeMorgan’s Theorems describe the equivalence between gates with inverted inputs and
gates with inverted outputs. Simply put, a NAND gate is equivalent to a Negative-OR
gate, and a NOR gate is equivalent to a Negative-AND gate.

e When "breaking” a complementation bar in a Boolean expression, the operation directly
underneath the break (addition or multiplication) reverses, and the broken bar pieces
remain over the respective terms.

e It is often easier to approach a problem by breaking the longest (uppermost) bar before
breaking any bars under it. You must never attempt to break two bars in one step!

e Complementation bars function as grouping symbols. Therefore, when a bar is broken,
the terms underneath it must remain grouped. Parentheses may be placed around these
grouped terms as a help to avoid changing precedence.
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7.9 Converting truth tables into Boolean expressions

In designing digital circuits, the designer often begins with a truth table describing what the
circuit should do. The design task is largely to determine what type of circuit will perform the
function described in the truth table. While some people seem to have a natural ability to look
at a truth table and immediately envision the necessary logic gate or relay logic circuitry for
the task, there are procedural techniques available for the rest of us. Here, Boolean algebra
proves its utility in a most dramatic way.

To illustrate this procedural method, we should begin with a realistic design problem. Sup-
pose we were given the task of designing a flame detection circuit for a toxic waste incinerator.
The intense heat of the fire is intended to neutralize the toxicity of the waste introduced into
the incinerator. Such combustion-based techniques are commonly used to neutralize medical
waste, which may be infected with deadly viruses or bacteria:

Toxic waste
inlet
Toxic waste incinerator +
Fuel
flame ~inlet

So long as a flame is maintained in the incinerator, it is safe to inject waste into it to be
neutralized. If the flame were to be extinguished, however, it would be unsafe to continue to
inject waste into the combustion chamber, as it would exit the exhaust un-neutralized, and
pose a health threat to anyone in close proximity to the exhaust. What we need in this system
is a sure way of detecting the presence of a flame, and permitting waste to be injected only if a
flame is "proven” by the flame detection system.

Several different flame-detection technologies exist: optical (detection of light), thermal
(detection of high temperature), and electrical conduction (detection of ionized particles in the
flame path), each one with its unique advantages and disadvantages. Suppose that due to the
high degree of hazard involved with potentially passing un-neutralized waste out the exhaust
of this incinerator, it is decided that the flame detection system be made redundant (multiple
sensors), so that failure of a single sensor does not lead to an emission of toxins out the exhaust.
Each sensor comes equipped with a normally-open contact (open if no flame, closed if flame
detected) which we will use to activate the inputs of a logic system:
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Toxic waste
inlet

Toxic waste incinerator +

Waste shutoff
valve

Fuel

x A

| | | |

|| || |
sensor || sensor || sensor

A B C

Logic system
----------- (shuts off waste valve
if no flame detected)

Our task, now, is to design the circuitry of the logic system to open the waste valve if and
only if there is good flame proven by the sensors. First, though, we must decide what the logical
behavior of this control system should be. Do we want the valve to be opened if only one out of
the three sensors detects flame? Probably not, because this would defeat the purpose of having
multiple sensors. If any one of the sensors were to fail in such a way as to falsely indicate the
presence of flame when there was none, a logic system based on the principle of "any one out
of three sensors showing flame” would give the same output that a single-sensor system would
with the same failure. A far better solution would be to design the system so that the valve is
commanded to open if any only if all three sensors detect a good flame. This way, any single,
failed sensor falsely showing flame could not keep the valve in the open position; rather, it
would require all three sensors to be failed in the same manner — a highly improbable scenario
— for this dangerous condition to occur.

Thus, our truth table would look like this:
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sensor

inputs

I_I—l

A|B|C| Output

0/0]0 0 Output =0
0|0j1] © (close valve)
0|1|0 0

0|1(1 0

1({0]|0 0

1{0(1 0

111(0 0 Output =1
11101 1 (open valve)

It does not require much insight to realize that this functionality could be generated with a
three-input AND gate: the output of the circuit will be "high” if and only if input A AND input
B AND input C are all "high:”

Tox_ic waste
inlet

Toxic waste incinerator +

Waste shutoff
valve

Fuel
~inlet

sensor
A

sensor
B

sensor
C




7.9. CONVERTING TRUTH TABLES INTO BOOLEAN EXPRESSIONS 203

If using relay circuitry, we could create this AND function by wiring three relay contacts in
series, or simply by wiring the three sensor contacts in series, so that the only way electrical
power could be sent to open the waste valve is if all three sensors indicate flame:

Toxic waste
inlet

Toxic waste incinerator +

Waste shutoff
valve

Fuel
~inlet

Sensor | [ sensor || sensor
A B C

p
.

While this design strategy maximizes safety, it makes the system very susceptible to sensor
failures of the opposite kind. Suppose that one of the three sensors were to fail in such a way
that it indicated no flame when there really was a good flame in the incinerator’s combustion
chamber. That single failure would shut off the waste valve unnecessarily, resulting in lost
production time and wasted fuel (feeding a fire that wasn’t being used to incinerate waste).

It would be nice to have a logic system that allowed for this kind of failure without shutting
the system down unnecessarily, yet still provide sensor redundancy so as to maintain safety
in the event that any single sensor failed "high” (showing flame at all times, whether or not
there was one to detect). A strategy that would meet both needs would be a "two out of three”
sensor logic, whereby the waste valve is opened if at least two out of the three sensors show
good flame. The truth table for such a system would look like this:
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sensor

inputs

A|B|C| Output

0]0]0 0 Output=0
0]|0j1] O (close valve)
0(1(0 0

011 1

1|00 0

1|01 1

111|0 1 Output =1
1111]1 1 (open valve)

Here, it is not necessarily obvious what kind of logic circuit would satisfy the truth ta-
ble. However, a simple method for designing such a circuit is found in a standard form of
Boolean expression called the Sum-Of-Products, or SOP, form. As you might suspect, a Sum-
Of-Products Boolean expression is literally a set of Boolean terms added (summed) together,
each term being a multiplicative (product) combination of Boolean variables. An example of
an SOP expression would be something like this: ABC + BC + DF, the sum of products ”ABC,”
”BC,” and "DF.”

Sum-Of-Products expressions are easy to generate from truth tables. All we have to do
is examine the truth table for any rows where the output is "high” (1), and write a Boolean
product term that would equal a value of 1 given those input conditions. For instance, in the
fourth row down in the truth table for our two-out-of-three logic system, where A=0, B=1, and
C=1, the product term would be A’BC, since that term would have a value of 1 if and only if
A=0, B=1, and C=1:

sensor

inputs

A|B|C| Output
0(0|0 0
0(0|1 0
0(1|0 0
0(1|1 1 ABC = 1
1|00 0
1|01 1
111|0 1
111(1 1

Three other rows of the truth table have an output value of 1, so those rows also need
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Boolean product expressions to represent them:

sensor
inputs
A|B|C| Output
0(0|0 0
0(0|1 0
0(1|0 0
0(1|1 1
1|0(0 0
1|01 1
111|0 1
111|121 1

ABC

ABC
ABC
ABC
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Finally, we join these four Boolean product expressions together by addition, to create a

single Boolean expression describing the truth table as a whole:

sensor
inputs
A|B|C| Output
0(0]0 0
0(0]1 0
0(1]0 0
0O(1]|1 1
1|00 0
1101 1
111|0 1
111|121 1

Qut put = ABC + ABC + ABC + ABC

ABC
ABC
ABC
ABC

1
1
1

Now that we have a Boolean Sum-Of-Products expression for the truth table’s function, we

can easily design a logic gate or relay logic circuit based on that expression:
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’Q/ Qut put = ABC + ABC + ABC + ABC

4

L

ABC

L
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T\ ABC
./

\ ABC

L
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Qut put = ABC + ABC + ABC + ABC

I—1 L2
A CR1
B CR2
C CR3
CR1 CR2 CR3 XaC Output
O
CR1 CR2 CR3
ABC
CR1 CR2 CR3
ABC
CR1 CR2 CR3
ABC

Unfortunately, both of these circuits are quite complex, and could benefit from simplifica-
tion. Using Boolean algebra techniques, the expression may be significantly simplified:
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ABC + ABC + ABC + ABC
l Factoring BCout of 1% and 4™ terms
BC(A + A) + ABC + ABC

l Applying identity A + A = 1
BC(1) + ABC + ABC

l Applying identity 1A = A
BC + ABC + ABC

l Factoring B out of 1% and 3" terms
B(C + AC) + ABC

l Applyingrule A + AB = A + Bto

the C + ACterm

B(C + A + ABC
l Distributing terms
BC + AB + ABC
l Factoring A out of 2" and 3" terms

BC + A(B + BC)
Applyingrule A + AB = A + Bto
l the B + BCterm
BC + A(B + C

l Distributing terms
BC + AB + AC
or Simplified result

AB + BC + AC

As a result of the simplification, we can now build much simpler logic circuits performing
the same function, in either gate or relay form:
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A B C

Qutput = AB + BC + AC

M\ M\ : AB

T BC

e

Qutput = AB + BC + AC

L, L,
A CR1
B CR2
C CR3
CR1 CR2 AB Output
CR2 CR3
BC
CR1 CR3
AC

Either one of these circuits will adequately perform the task of operating the incinerator
waste valve based on a flame verification from two out of the three flame sensors. At minimum,
this is what we need to have a safe incinerator system. We can, however, extend the function-
ality of the system by adding to it logic circuitry designed to detect if any one of the sensors
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does not agree with the other two.

If all three sensors are operating properly, they should detect flame with equal accuracy.
Thus, they should either all register “low” (000: no flame) or all register "high” (111: good
flame). Any other output combination (001, 010, 011, 100, 101, or 110) constitutes a disagree-
ment between sensors, and may therefore serve as an indicator of a potential sensor failure. If
we added circuitry to detect any one of the six "sensor disagreement” conditions, we could use
the output of that circuitry to activate an alarm. Whoever is monitoring the incinerator would
then exercise judgment in either continuing to operate with a possible failed sensor (inputs:
011, 101, or 110), or shut the incinerator down to be absolutely safe. Also, if the incinerator
is shut down (no flame), and one or more of the sensors still indicates flame (001, 010, 011,
100, 101, or 110) while the other(s) indicate(s) no flame, it will be known that a definite sensor
problem exists.

The first step in designing this "sensor disagreement” detection circuit is to write a truth
table describing its behavior. Since we already have a truth table describing the output of the
”good flame” logic circuit, we can simply add another output column to the table to represent
the second circuit, and make a table representing the entire logic system:

Output=0 Output =0
(close valve) (sensors agree)
Output =1 Output =1
(open valve) (sensors disagree)

sensor \

inputs Good  Sensor
flame disagreement

A|B|C| Output | Output
0(0|0 0 0
0(0|1 0 1
0(1|0 0 1
0(1|1 1 1
1|00 0 1
1|10]1 1 1
111|0 1 1
111(1 1 0

While it is possible to generate a Sum-Of-Products expression for this new truth table col-
umn, it would require six terms, of three variables each! Such a Boolean expression would
require many steps to simplify, with a large potential for making algebraic errors:
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Output =0 Output=0
(close valve) (sensors agree)
Output =1 Output=1
(open valve) (sensors disagree)

sensor \

inputs Good  Sensor
flame disagreement

A|B|C| Output | Output
0(0]0 0 0

0(0f1 0 1 ABC
0(1]0 0 1 ABC
0(1]|1 1 1 ABC
1/0|0 0 1 ABC
1|10(1 1 1 ABC
111(0 1 1 ABC
1111 1 0

Qut put = ABC + ABC + ABC + ABC + ABC + ABC

An alternative to generating a Sum-Of-Products expression to account for all the “high”
(1) output conditions in the truth table is to generate a Product-Of-Sums, or POS, expression,
to account for all the "low” (0) output conditions instead. Being that there are much fewer
instances of a "low” output in the last truth table column, the resulting Product-Of-Sums ex-
pression should contain fewer terms. As its name suggests, a Product-Of-Sums expression is
a set of added terms (sums), which are multiplied (product) together. An example of a POS
expression would be (A + B)(C + D), the product of the sums A + B” and ”C + D”.

To begin, we identify which rows in the last truth table column have "low” (0) outputs, and
write a Boolean sum term that would equal 0 for that row’s input conditions. For instance, in
the first row of the truth table, where A=0, B=0, and C=0, the sum term would be (A + B + C),
since that term would have a value of 0 if and only if A=0, B=0, and C=0:
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Output =0
(close valve)
Output =1

(open valve)

sensor \

Output =0
(sensors agree)
Output =1

(sensors disagree)

(A+ B+ QO

inputs Good  Sensor
flame disagreement
A|B|[C| Output | Output
0(0|0 0 0
0(0|1 0 1
0|1|0 0 1
011 1 1
1(0]|0 0 1
1(0|1 1 1
1]1(0 1 1
1({1|1 1 0

CHAPTER 7. BOOLEAN ALGEBRA

Only one other row in the last truth table column has a "low” (0) output, so all we need is one
more sum term to complete our Product-Of-Sums expression. This last sum term represents a
0 output for an input condition of A=1, B=1 and C=1. Therefore, the term must be written as
(A’ + B+ C), because only the sum of the complemented input variables would equal 0 for that

condition only:
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Output =0 Output =0
(close valve) (sensors agree)
Output =1 Output =1
(open valve) (sensors disagree)

sensor \

inputs Good  Sensor
flame disagreement

A|B|[C| Output | Output
0(0|0 0 0 (A+ B+ O
0(0|1 0 1
0(1|0 0 1
011 1 1
1|00 0 1
1|01 1 1
1]1(0 1 1
111(1 1 0 (A+ B+ O

213

The completed Product-Of-Sums expression, of course, is the multiplicative combination of

these two sum terms:
Output =0 Output=0
(close valve) (sensors agree)
Output =1 Output =1
(open valve) (sensors disagree)

sensor \

inputs Good  Sensor
flame disagreement

A|B|C| Output | Output
0(o0fo0 0 0 (A+B+ O
0(0f1 0 1
0(1(0 0 1
0(1(1 1 1
110|0 0 1
1({0]1 1 1
111|0 1 1
1({1)1 1 0 (A+B+ O
Qutput = (A+B+CQ(A+B+ 0O
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Whereas a Sum-Of-Products expression could be implemented in the form of a set of AND
gates with their outputs connecting to a single OR gate, a Product-Of-Sums expression can be
implemented as a set of OR gates feeding into a single AND gate:

A B C
Q/Q/j Qutput = (A+ B+ Q(A+ B+ 0O
——11 (A+ B+ 0

S

Correspondingly, whereas a Sum-Of-Products expression could be implemented as a paral-
lel collection of series-connected relay contacts, a Product-Of-Sums expression can be imple-
mented as a series collection of parallel-connected relay contacts:
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Qutput = (A+B+ Q(A+ B+ 0O

I—l L2
A CR1
B CR2
C CR3
CR1 CR1 Output
ot
CR2 CR2
CR3 CR3

(A+ B+ C (A+ B+ 0O

The previous two circuits represent different versions of the ”sensor disagreement” logic
circuit only, not the "good flame” detection circuit(s). The entire logic system would be the com-
bination of both ”"good flame” and ”sensor disagreement” circuits, shown on the same diagram.

Implemented in a Programmable Logic Controller (PLC), the entire logic system might
resemble something like this:
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Ly Lo

| [
s Waste valve
eRsor '_AI I———@OX1 ?1 % Ylo@-J\/—‘ solenoid
O ,  Sensor
QoX2 Y200 ~A disagreement
Sensor | L P00 X3 Y30@ alarm lamp
B PLC
@oXxa Y40@
Sensor @oX5 Y50@
¢ @ox6 Y60@
(@ Conmon  mmma” Sour ce @A
I N —I
N\ r
N
X1 X2 V1 Prog;%rlgmmg
I | |
1 O
X2 X3
X1 X3
Personal |_|
computer _I I_
display X1 X1 Y2
I I
— At O
X2 X2
X3 X3

As you can see, both the Sum-Of-Products and Products-Of-Sums standard Boolean forms
are powerful tools when applied to truth tables. They allow us to derive a Boolean expression
— and ultimately, an actual logic circuit — from nothing but a truth table, which is a written
specification for what we want a logic circuit to do. To be able to go from a written specification
to an actual circuit using simple, deterministic procedures means that it is possible to automate
the design process for a digital circuit. In other words, a computer could be programmed to
design a custom logic circuit from a truth table specification! The steps to take from a truth
table to the final circuit are so unambiguous and direct that it requires little, if any, creativity
or other original thought to execute them.

e REVIEW:
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e Sum-Of-Products, or SOP, Boolean expressions may be generated from truth tables quite
easily, by determining which rows of the table have an output of 1, writing one product
term for each row, and finally summing all the product terms. This creates a Boolean
expression representing the truth table as a whole.

e Sum-Of-Products expressions lend themselves well to implementation as a set of AND
gates (products) feeding into a single OR gate (sum).

e Product-Of-Sums, or POS, Boolean expressions may also be generated from truth tables
quite easily, by determining which rows of the table have an output of 0, writing one
sum term for each row, and finally multiplying all the sum terms. This creates a Boolean
expression representing the truth table as a whole.

e Product-Of-Sums expressions lend themselves well to implementation as a set of OR
gates (sums) feeding into a single AND gate (product).
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8.1 Introduction

Why learn about Karnaugh maps? The Karnaugh map, like Boolean algebra, is a simplification
tool applicable to digital logic. See the "Toxic waste incinerator” in the Boolean algebra chapter
for an example of Boolean simplification of digital logic. The Karnaugh Map will simplify logic
faster and more easily in most cases.

219
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Boolean simplification is actually faster than the Karnaugh map for a task involving two
or fewer Boolean variables. It is still quite usable at three variables, but a bit slower. At four
input variables, Boolean algebra becomes tedious. Karnaugh maps are both faster and easier.
Karnaugh maps work well for up to six input variables, are usable for up to eight variables.
For more than six to eight variables, simplification should be by CAD (computer automated
design).

Recommended logic simplification vs number of inputs
Variables |Boolean algebra | Karnaugh map | computer automated
1-2 X ?

3 X X ?
4 ? X ?
5-6 X X
7-8 ? X
>8 X

In theory any of the three methods will work. However, as a practical matter, the above
guidelines work well. We would not normally resort to computer automation to simplify a
three input logic block. We could sooner solve the problem with pencil and paper. However,
if we had seven of these problems to solve, say for a BCD (Binary Coded Decimal) to seven
segment decoder, we might want to automate the process. A BCD to seven segment decoder
generates the logic signals to drive a seven segment LED (light emitting diode) display.

Examples of computer automated design languages for simplification of logic are PALASM,
ABEL, CUPL, Verilog, and VHDL. These programs accept a hardware descriptor language
input file which is based on Boolean equations and produce an output file describing a reduced
(or simplified) Boolean solution. We will not require such tools in this chapter. Let’s move on
to Venn diagrams as an introduction to Karnaugh maps.

8.2 Venn diagrams and sets

Mathematicians use Venn diagrams to show the logical relationships of sets (collections of
objects) to one another. Perhaps you have already seen Venn diagrams in your algebra or other
mathematics studies. If you have, you may remember overlapping circles and the union and
intersection of sets. We will review the overlapping circles of the Venn diagram. We will adopt
the terms OR and AND instead of union and intersection since that is the terminology used in
digital electronics.

The Venn diagram bridges the Boolean algebra from a previous chapter to the Karnaugh
Map. We will relate what you already know about Boolean algebra to Venn diagrams, then
transition to Karnaugh maps.

A set is a collection of objects out of a universe as shown below. The members of the set
are the objects contained within the set. The members of the set usually have something in
common; though, this is not a requirement. Out of the universe of real numbers, for example,
the set of all positive integers {1,2,3...} is a set. The set {3,4,5} is an example of a smaller set,
or subset of the set of all positive integers. Another example is the set of all males out of the
universe of college students. Can you think of some more examples of sets?
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Above left, we have a Venn diagram showing the set A in the circle within the universe U,
the rectangular area. If everything inside the circle is A, then anything outside of the circle is
not A. Thus, above center, we label the rectangular area outside of the circle A as A-not instead
of U. We show B and B-not in a similar manner.

What happens if both A and B are contained within the same universe? We show four
possibilities.
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The first example shows that set A and set B have nothing in common according to the
Venn diagram. There is no overlap between the A and B circular hatched regions. For example,
suppose that sets A and B contain the following members:

set A ={1,2,3,4} set B = {5,6,7,8}

None of the members of set A are contained within set B, nor are any of the members of B
contained within A. Thus, there is no overlap of the circles.
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N\
41

In the second example in the above Venn diagram, Set A is totally contained within set B
How can we explain this situation? Suppose that sets A and B contain the following members:

set A = {1,2}
set B = {1,2,3,4,5,6,7,8}

All members of set A are also members of set B. Therefore, set A is a subset of Set B. Since
all members of set A are members of set B, set A is drawn fully within the boundary of set B.

There is a fifth case, not shown, with the four examples. Hint: it is similar to the last
(fourth) example. Draw a Venn diagram for this fifth case.

A ™
f B}
\; l,
Nl

The third example above shows perfect overlap between set A and set B. It looks like both
sets contain the same identical members. Suppose that sets A and B contain the following:

set A={1,2,3,4} set B={1,2,3,4}
Therefore,

Set A =Set B

Sets And B are identically equal because they both have the same identical members. The
A and B regions within the corresponding Venn diagram above overlap completely. If there is
any doubt about what the above patterns represent, refer to any figure above or below to be
sure of what the circular regions looked like before they were overlapped.
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The fourth example above shows that there is something in common between set A and set
B in the overlapping region. For example, we arbitrarily select the following sets to illustrate
our point:

set A={1,2,3,4} set B = {3,4,5,6}

Set A and Set B both have the elements 3 and 4 in common These elements are the reason
for the overlap in the center common to A and B. We need to take a closer look at this situation

8.3 Boolean Relationships on Venn Diagrams

The fourth example has A partially overlapping B. Though, we will first look at the whole
of all hatched area below, then later only the overlapping region. Let’s assign some Boolean
expressions to the regions above as shown below. Below left there is a red horizontal hatched
area for A. There is a blue vertical hatched area for B.

<’“‘ ATB
s V
;
\
N——1 | /

If we look at the whole area of both, regardless of the hatch style, the sum total of all hatched
areas, we get the illustration above right which corresponds to the inclusive OR function of A,
B. The Boolean expression is A+B. This is shown by the 45° hatched area. Anything outside of
the hatched area corresponds to (A+B)-not as shown above. Let’s move on to next part of the
fourth example

The other way of looking at a Venn diagram with overlapping circles is to look at just the
part common to both A and B, the double hatched area below left. The Boolean expression for
this common area corresponding to the AND function is AB as shown below right. Note that
everything outside of double hatched AB is AB-not.
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Note that some of the members of A, above, are members of (AB)’. Some of the members
of B are members of (AB)’. But, none of the members of (AB)’ are within the doubly hatched
area AB.
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We have repeated the second example above left. Your fifth example, which you previously
sketched, is provided above right for comparison. Later we will find the occasional element, or
group of elements, totally contained within another group in a Karnaugh map.

Next, we show the development of a Boolean expression involving a complemented variable
below.

A S xB  <IT
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Example: (above)
Show a Venn diagram for A’B (A-not AND B).
Solution:

Starting above top left we have red horizontal shaded A’ (A-not), then, top right, B. Next,
lower left, we form the AND function A’B by overlapping the two previous regions. Most people
would use this as the answer to the example posed. However, only the double hatched A’B is
shown far right for clarity. The expression A’B is the region where both A’ and B overlap. The
clear region outside of A’B is (A’B)’, which was not part of the posed example.

Let’s try something similar with the Boolean OR function.

Example:
Find B’+A
B
‘ 7 71 | A
{
\ \
Solution:

Above right we start out with B which is complemented to B’. Finally we overlay A on top
of B’. Since we are interested in forming the OR function, we will be looking for all hatched
area regardless of hatch style. Thus, A+B’ is all hatched area above right. It is shown as a
single hatch region below left for clarity.

/@ o N

8 )AB [ IRe Dok negmion )

Kane
Example:
Find (A+B’)’
Solution:

The green 45° A+B’ hatched area was the result of the previous example. Moving on to a
to,(A+B’)’ ,the present example, above left, let us find the complement of A+B’, which is the
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white clear area above left corresponding to (A+B’)’. Note that we have repeated, at right, the
AB'’ double hatched result from a previous example for comparison to our result. The regions
corresponding to (A+B’)’ and AB’ above left and right respectively are identical. This can be
proven with DeMorgan’s theorem and double negation.

This brings up a point. Venn diagrams don’t actually prove anything. Boolean algebra is
needed for formal proofs. However, Venn diagrams can be used for verification and visualiza-
tion. We have verified and visualized DeMorgan’s theorem with a Venn diagram.

Example:

What does the Boolean expression A’+B’ look like on a Venn Diagram?

(A TR "\le A+B any hatch

I —

i 1 4/ ] A+B clear area
S | ————AB double hatch

Solution: above figure

Start out with red horizontal hatched A’ and blue vertical hatched B’ above. Superimpose
the diagrams as shown. We can still see the A’ red horizontal hatch superimposed on the other
hatch. It also fills in what used to be part of the B (B-true) circle, but only that part of the B
open circle not common to the A open circle. If we only look at the B’ blue vertical hatch, it fills
that part of the open A circle not common to B. Any region with any hatch at all, regardless of
type, corresponds to A’+B’. That is, everything but the open white space in the center.

Example:

What does the Boolean expression (A’+B’)’ look like on a Venn Diagram?

Solution: above figure, lower left

Looking at the white open space in the center, it is everything NOT in the previous solution
of A’+B’, which is (A’+B’)’.

Example:
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Show that (A’+B’) = AB

Solution: below figure, lower left
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A+B no hatch>

A+B=AB=AB

We previously showed on the above right diagram that the white open region is (A’+B’)’.
On an earlier example we showed a doubly hatched region at the intersection (overlay) of AB.
This is the left and middle figures repeated here. Comparing the two Venn diagrams, we see
that this open region , (A’+B’)’, is the same as the doubly hatched region AB (A AND B). We
can also prove that (A’+B’)’=AB by DeMorgan’s theorem and double negation as shown above.

[~ N
7T

ABC — | \b\/‘\\ N B

AR

| SENER BC

C

A 4 <\\W

AC =

Three variable Venn diagram

We show a three variable Venn diagram above with regions A (red horizontal), B (blue
vertical), and, C (green 45°). In the very center note that all three regions overlap representing
Boolean expression ABC. There is also a larger petal shaped region where A and B overlap
corresponding to Boolean expression AB. In a similar manner A and C overlap producing
Boolean expression AC. And B and C overlap producing Boolean expression BC.

Looking at the size of regions described by AND expressions above, we see that region size
varies with the number of variables in the associated AND expression.
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e A, 1-variable is a large circular region.
e AB, 2-variable is a smaller petal shaped region.
e ABC, 3-variable is the smallest region.

e The more variables in the AND term, the smaller the region.

8.4 Making a Venn diagram look like a Karnaugh map

Starting with circle A in a rectangular A’ universe in figure (a) below, we morph a Venn
diagram into almost a Karnaugh map.

—

A A A A
e
a b C

A A A A A A
d e f

We expand circle A at (b) and (c), conform to the rectangular A’ universe at (d), and change
A to a rectangle at (e). Anything left outside of A is A’ . We assign a rectangle to A’ at (f).
Also, we do not use shading in Karnaugh maps. What we have so far resembles a 1-variable
Karnaugh map, but is of little utility. We need multiple variables.

A A A A

a b Cc

Figure (a) above is the same as the previous Venn diagram showing A and A’ above except
that the labels A and A’ are above the diagram instead of inside the respective regions. Imagine
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that we have go through a process similar to figures (a-f) to get a ”square Venn diagram” for B
and B’ as we show in middle figure (b). We will now superimpose the diagrams in Figures (a)
and (b) to get the result at (c), just like we have been doing for Venn diagrams. The reason we
do this is so that we may observe that which may be common to two overlapping regions——
say where A overlaps B. The lower right cell in figure (c) corresponds to AB where A overlaps
B.

A A N0 1
B 0
B 1

We don’t waste time drawing a Karnaugh map like (c) above, sketching a simplified version
as above left instead. The column of two cells under A’ is understood to be associated with A’,
and the heading A is associated with the column of cells under it. The row headed by B’ is
associated with the cells to the right of it. In a similar manner B is associated with the cells to
the right of it. For the sake of simplicity, we do not delineate the various regions as clearly as
with Venn diagrams.

The Karnaugh map above right is an alternate form used in most texts. The names of
the variables are listed next to the diagonal line. The A above the diagonal indicates that the
variable A (and A’) is assigned to the columns. The 0 is a substitute for A’, and the 1 substitutes
for A. The B below the diagonal is associated with the rows: 0 for B’, and 1 for B

Example:

Mark the cell corresponding to the Boolean expression AB in the Karnaugh map above with
al

A A A A A A

[

B\ B 1y B| |1

Solution:

™
™
—~
__
™

Shade or circle the region corresponding to A. Then, shade or enclose the region correspond-
ing to B. The overlap of the two regions is AB. Place a 1 in this cell. We do not necessarily
enclose the A and B regions as at above left.
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We develop a 3-variable Karnaugh map above, starting with Venn diagram like regions.
The universe (inside the black rectangle) is split into two narrow narrow rectangular regions
for A’ and A. The variables B’ and B divide the universe into two square regions. C occupies a
square region in the middle of the rectangle, with C’ split into two vertical rectangles on each
side of the C square.

In the final figure, we superimpose all three variables, attempting to clearly label the vari-
ous regions. The regions are less obvious without color printing, more obvious when compared
to the other three figures. This 3-variable K-Map (Karnaugh map) has 22 = 8 cells, the small
squares within the map. Each individual cell is uniquely identified by the three Boolean Vari-
ables (A, B, C). For example, ABC’ uniquely selects the lower right most cell(*), AB’C’ selects
the upper left most cell (x).

_C € T \®BC BC BC BT

=S e - —

X

We don’t normally label the Karnaugh map as shown above left. Though this figure clearly
shows map coverage by single boolean variables of a 4-cell region. Karnaugh maps are labeled
like the illustration at right. Each cell is still uniquely identified by a 3-variable product term,
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a Boolean AND expression. Take, for example, ABC’ following the A row across to the right
and the BC’ column down, both intersecting at the lower right cell ABC’. See (*) above figure.

BT BC BC BC ABCbO 011110
A 0
A 1

The above two different forms of a 3-variable Karnaugh map are equivalent, and is the
final form that it takes. The version at right is a bit easier to use, since we do not have to write
down so many boolean alphabetic headers and complement bars, just 1s and 0s Use the form
of map on the right and look for the the one at left in some texts. The column headers on the
left B'C’, B’C, BC, BC’ are equivalent to 00, 01, 11, 10 on the right. The row headers A, A’ are
equivalent to 0, 1 on the right map.

8.5 Karnaugh maps, truth tables, and Boolean expres-
sions

Maurice Karnaugh, a telecommunications engineer, developed the Karnaugh map at Bell Labs
in 1953 while designing digital logic based telephone switching circuits.

Now that we have developed the Karnaugh map with the aid of Venn diagrams, let’s put
it to use. Karnaugh maps reduce logic functions more quickly and easily compared to Boolean
algebra. By reduce we mean simplify, reducing the number of gates and inputs. We like to
simplify logic to a lowest cost form to save costs by elimination of components. We define
lowest cost as being the lowest number of gates with the lowest number of inputs per gate.

Given a choice, most students do logic simplification with Karnaugh maps rather than
Boolean algebra once they learn this tool.
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L, L2
CR1
A 1 -
| B CR2

AT AlB] output B
B | 0l0| a AN 1
i 01| B 0lalP
l 10| x 11 x([%
o 11| o

nspecified logic
Qutput = ABC + ABC + . . . ABC

We show five individual items above, which are just different ways of representing the same
thing: an arbitrary 2-input digital logic function. First is relay ladder logic, then logic gates,
a truth table, a Karnaugh map, and a Boolean equation. The point is that any of these are
equivalent. Two inputs A and B can take on values of either 0 or 1, high or low, open or closed,
True or False, as the case may be. There are 22= 4 combinations of inputs producing an output.
This is applicable to all five examples.

These four outputs may be observed on a lamp in the relay ladder logic, on a logic probe
on the gate diagram. These outputs may be recorded in the truth table, or in the Karnaugh
map. Look at the Karnaugh map as being a rearranged truth table. The Output of the Boolean
equation may be computed by the laws of Boolean algebra and transfered to the truth table or
Karnaugh map. Which of the five equivalent logic descriptions should we use? The one which
is most useful for the task to be accomplished.
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The outputs of a truth table correspond on a one-to-one basis to Karnaugh map entries.
Starting at the top of the truth table, the A=0, B=0 inputs produce an output «. Note that this
same output « is found in the Karnaugh map at the A=0, B=0 cell address, upper left corner
of K-map where the A=0 row and B=0 column intersect. The other truth table outputs 3, x, ¢
from inputs AB=01, 10, 11 are found at corresponding K-map locations.

Below, we show the adjacent 2-cell regions in the 2-variable K-map with the aid of previous
rectangular Venn diagram like Boolean regions.
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Cells « and y are adjacent in the K-map as ellipses in the left most K-map below. Referring
to the previous truth table, this is not the case. There is another truth table entry (3) between
them. Which brings us to the whole point of the organizing the K-map into a square array,
cells with any Boolean variables in common need to be close to one another so as to present a
pattern that jumps out at us. For cells a and y they have the Boolean variable B’ in common.
We know this because B=0 (same as B’) for the column above cells « and y. Compare this to
the square Venn diagram above the K-map.

A similar line of reasoning shows that 5 and ¢ have Boolean B (B=1) in common. Then, «
and § have Boolean A’ (A=0) in common. Finally, ¥ and § have Boolean A (A=1) in common.
Compare the last two maps to the middle square Venn diagram.

To summarize, we are looking for commonality of Boolean variables among cells. The Kar-
naugh map is organized so that we may see that commonality. Let’s try some examples.
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A |B | Output AB0o 1
010 o 0
01 1 1
110 0

1|11 1

Example:

Transfer the contents of the truth table to the Karnaugh map above.

e —-—-—

.’/ A|B | Output \\AZO A O,'/i )
[0[o] o | o T
1]0 '
i)
Solution:

The truth table contains two 1s. the K- map must have both of them. locate the first 1 in
the 2nd row of the truth table above.

e note the truth table AB address
e locate the cell in the K-map having the same address
e place a 1 in that cell

Repeat the process for the 1 in the last line of the truth table.

Example:

For the Karnaugh map in the above problem, write the Boolean expression. Solution is
below.
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B B

APO 1 A
0 a\ A
1] |
Qut = B

Solution:

Look for adjacent cells, that is, above or to the side of a cell. Diagonal cells are not adjacent.
Adjacent cells will have one or more Boolean variables in common.

e Group (circle) the two 1s in the column

e Find the variable(s) top and/or side which are the same for the group, Write this as the
Boolean result. It is B in our case.

e Ignore variable(s) which are not the same for a cell group. In our case A varies, is both 1
and 0, ignore Boolean A.

e Ignore any variable not associated with cells containing 1s. B’ has no ones under it.
Ignore B’

e Result Out =B

This might be easier to see by comparing to the Venn diagrams to the right, specifically the
B column.

Example:

Write the Boolean expression for the Karnaugh map below.

B B

A

b o X
(I
H

Solution: (above)

e Group (circle) the two 1’s in the row



236 CHAPTER 8. KARNAUGH MAPPING
e Find the variable(s) which are the same for the group, Out = A’
Example:

For the Truth table below, transfer the outputs to the Karnaugh, then write the Boolean
expression for the result.

A |B | Output ABo0 1 ABo 1 ARO 1
olo| o o[ ] 0 AL 1
olt] 14— 1lal3| 1@): @k
1]0 1-—//7

1]1 1 —] Qutput= A + B /

Wong Qutput= AB + B

Solution:

Transfer the 1s from the locations in the Truth table to the corresponding locations in the
K-map.

e Group (circle) the two 1’s in the column under B=1

e Group (circle) the two 1’s in the row right of A=1

e Write product term for first group = B

e Write product term for second group = A

e Write Sum-Of-Products of above two terms Output = A+B

The solution of the K-map in the middle is the simplest or lowest cost solution. A less desirable
solution is at far right. After grouping the two 1s, we make the mistake of forming a group of
1-cell. The reason that this is not desirable is that:

e The single cell has a product term of AB’
e The corresponding solution is Qutput = AB’ + B
e This is not the simplest solution

The way to pick up this single 1 is to form a group of two with the 1 to the right of it as shown
in the lower line of the middle K-map, even though this 1 has already been included in the
column group (B). We are allowed to re-use cells in order to form larger groups. In fact, it is
desirable because it leads to a simpler result.

We need to point out that either of the above solutions, Output or Wrong Output, are logi-
cally correct. Both circuits yield the same output. It is a matter of the former circuit being the
lowest cost solution.

Example:



8.5. KARNAUGH MAPS, TRUTH TABLES, AND BOOLEAN EXPRESSIONS 237

Fill in the Karnaugh map for the Boolean expression below, then write the Boolean expres-
sion for the result.

out=AB + AB+ AB aB0o1 aABO1 A
01 _10_ 11 4 o TR
Tl 1D

Qutput= A + B

Solution: (above)

The Boolean expression has three product terms. There will be a 1 entered for each product
term. Though, in general, the number of 1s per product term varies with the number of vari-
ables in the product term compared to the size of the K-map. The product term is the address
of the cell where the 1 is entered. The first product term, A’B, corresponds to the 01 cell in the
map. A 1 is entered in this cell. The other two P-terms are entered for a total of three 1s

Next, proceed with grouping and extracting the simplified result as in the previous truth
table problem.

Example:

Simplify the logic diagram below.

IDENe
g

—2-
v

iy
w |>
e

Solution: (Figure below)

e Write the Boolean expression for the original logic diagram as shown below
e Transfer the product terms to the Karnaugh map

Form groups of cells as in previous examples

Write Boolean expression for groups as in previous examples

Draw simplified logic diagram



238 CHAPTER 8. KARNAUGH MAPPING

Qut=AB + AB+ AB AP0 1 APO 1 A
01 10 11 0 0 1\
A 1141 1 (I\TH
] AB £
B I /
Qut= A+ B
A AB Qut
D
A AB D&t
] B
2| -
Example:
Simplify the logic diagram below.
A AB Qut= AB + AB ABoO 1
B | 01 10 0
14
B_| B Excl usi ve- OR
Solution:

e Write the Boolean expression for the original logic diagram shown above
e Transfer the product terms to the Karnaugh map.

e It is not possible to form groups.

e No simplification is possible; leave it as it is.

No logic simplification is possible for the above diagram. This sometimes happens. Neither
the methods of Karnaugh maps nor Boolean algebra can simplify this logic further. We show
an Exclusive-OR schematic symbol above; however, this is not a logical simplification. It just
makes a schematic diagram look nicer. Since it is not possible to simplify the Exclusive-OR
logic and it is widely used, it is provided by manufacturers as a basic integrated circuit (7486).

8.6 Logic simplification with Karnaugh maps

The logic simplification examples that we have done so could have been performed with Boolean
algebra about as quickly. Real world logic simplification problems call for larger Karnaugh
maps so that we may do serious work. We will work some contrived examples in this section,
leaving most of the real world applications for the Combinatorial Logic chapter. By contrived,
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we mean examples which illustrate techniques. This approach will develop the tools we need
to transition to the more complex applications in the Combinatorial Logic chapter.

We show our previously developed Karnaugh map. We will use the form on the right

BCBC BC BC  ANDO 011110
A 0
A 1

Note the sequence of numbers across the top of the map. It is not in binary sequence which
would be 00, 01, 10, 11. It is 00, 01, 11 10, which is Gray code sequence. Gray code sequence
only changes one binary bit as we go from one number to the next in the sequence, unlike
binary. That means that adjacent cells will only vary by one bit, or Boolean variable. This is
what we need to organize the outputs of a logic function so that we may view commonality.
Moreover, the column and row headings must be in Gray code order, or the map will not work
as a Karnaugh map. Cells sharing common Boolean variables would no longer be adjacent, nor
show visual patterns. Adjacent cells vary by only one bit because a Gray code sequence varies
by only one bit.

If we sketch our own Karnaugh maps, we need to generate Gray code for any size map that
we may use. This is how we generate Gray code of any size.
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How t o generate Gray code.

1. Write 0,1 in a column.

2. Draw a mirror under the column.
3. Reflect the numbers about the mirror.

4. Distinguish the numbers above the mirror with leading zeros.

5. Distinguish those below the mirror with
leading ones.

6. Finished 2-bit Gray code.

0 00 00 00 00 000 000
1 01 0101 01 001 001
1 1 11 11 11 011 011
0 O 10 10 10 010 010
7. Need 3-bit Gray code? Draw l O 10 1 1 O
2 b1t odes refiect sbout 11 11 111
mirror. 01 01 101
00 00 100

8. Distinguish upper 4-numbers with leading zeros.

00
11

9. Distinguish lower 4-numbers with leading ones.

Note that the Gray code sequence, above right, only varies by one bit as we go down the list,
or bottom to top up the list. This property of Gray code is often useful in digital electronics in
general. In particular, it is applicable to Karnaugh maps.

Let us move on to some examples of simplification with 3-variable Karnaugh maps. We
show how to map the product terms of the unsimplified logic to the K-map. We illustrate
how to identify groups of adjacent cells which leads to a Sum-of-Products simplification of the
digital logic.

Qut= ABC+ABC

BC
A 00)01 110

o @z
1 )

-Qut= AB/ .

Above we, place the 1’s in the K-map for each of the product terms, identify a group of two,
then write a p-term (product term) for the sole group as our simplified result.
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CQut= ABC+ ABC+ABC+ABC
BC

AN00 011110
o4l |1 |17
1

Qut= A 0

Mapping the four product terms above yields a group of four covered by Boolean A’
Qut= ABC+ ABC+ ABC+ ABC

BC
ANX00 011110

o [[]1]
1| [l]1)
Qut= C 0

Mapping the four p-terms yields a group of four, which is covered by one variable C.

Qut = ABC+ABC+ABC+ABC+ABC+ABT
BC
AN00 011110

o2 [1|@ 11}
1 1 ld]
Qut= A+B

After mapping the six p-terms above, identify the upper group of four, pick up the lower two
cells as a group of four by sharing the two with two more from the other group. Covering these
two with a group of four gives a simpler result. Since there are two groups, there will be two
p-terms in the Sum-of-Products result A’+B

Qut= ABC+ ABC
BC
A\00 011110

0 A
1 v

Qut= BC H

The two product terms above form one group of two and simplifies to BC
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Qut = ABC+ ABC+ ABC+ ABC
BC
A\00 011110

0 [1]1]

1 11 [1]

Qut= B U

Mapping the four p-terms yields a single group of four, which is B

Qut = ABC+ ABC+ ABC+ ABC

BC
AN00 0111 10

o1 .1
1- 1’/// \\\\1
S~ «—
Qut=C O

Mapping the four p-terms above yields a group of four. Visualize the group of four by rolling
up the ends of the map to form a cylinder, then the cells are adjacent. We normally mark the
group of four as above left. Out of the variables A, B, C, there is a common variable: C’. C’is a
0 over all four cells. Final result is C’.

Cut = ABC+ABC+ABC+ABC+ABC+ABC

BC
AN00 01 1110
ol [P

1 1) | VA

The six cells above from the unsimplified equation can be organized into two groups of four.
These two groups should give us two p-terms in our simplified result of A’ + C’.

Below, we revisit the Toxic Waste Incinerator from the Boolean algebra chapter. See Boolean
algebra chapter for details on this example. We will simplify the logic using a Karnaugh map.
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A B C
j j Q/ Qut put = ABC + ABC + ABC + ABC
é ——  \ABC
—T\ /
—— 11— \ABC .
—r—1_/ AN00 011110
T— I e 0 13-
] ) 1 EpiEN)
[ \ABC
J Qutput = AB + BC + AC

The Boolean equation for the output has four product terms. Map four 1’s corresponding to
the p-terms. Forming groups of cells, we have three groups of two. There will be three p-terms
in the simplified result, one for each group. See "Toxic Waste Incinerator”, Boolean algebra
chapter for a gate diagram of the result, which is reproduced below.

Qutput = AB + BC + AC

M\ M\ AB

AC

0
O

Below we repeat the Boolean algebra simplification of Toxic waste incinerator for compari-
son.
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ABC + ABC + ABC + ABC

l Factoring BCout of 1% and 4™ terms
BC(A + A) + ABC + ABC
l Applying identity A + A = 1
BC(1) + ABC + ABC

l Applying identity 1A = A
BC + ABC + ABC

l Factoring B out of 1% and 3" terms
B(C + AC) + ABC

l Applyingrule A + AB = A + Bto

the C + ACterm

B(C + A + ABC
l Distributing terms
BC + AB + ABC
l Factoring A out of 2" and 3" terms

BC + A(B + BC)
Applyingrule A + AB = A + Bto
l the B + BCterm
BC + A(B + C

l Distributing terms
BC + AB + AC
or Simplified result

AB + BC + AC

Below we repeat the Toxic waste incinerator Karnaugh map solution for comparison to the
above Boolean algebra simplification. This case illustrates why the Karnaugh map is widely
used for logic simplification.

BC
ANQ0 0111 10
O 1

1| Ao

The Karnaugh map method looks easier than the previous page of boolean algebra.

Qutput = AB + BC + AC
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8.7 Larger 4-variable Karnaugh maps

Knowing how to generate Gray code should allow us to build larger maps. Actually, all we need
to do is look at the left to right sequence across the top of the 3-variable map, and copy it down
the left side of the 4-variable map. See below.

CD
Ap\00 01 11 10
00

01
11

10

The following four variable Karnaugh maps illustrate reduction of Boolean expressions too
tedious for Boolean algebra. Reductions could be done with Boolean algebra. However, the
Karnaugh map is faster and easier, especially if there are many logic reductions to do.

Qut = ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

CD
Ap\00 01 11 10

00 /1)

01 B

SEE R EN

100\ 1/ 0
\

Qut= AB + CD

The above Boolean expression has seven product terms. They are mapped top to bottom
and left to right on the K-map above. For example, the first P-term A’B’CD is first row 3rd cell,
corresponding to map location A=0, B=0, C=1, D=1. The other product terms are placed in a
similar manner. Encircling the largest groups possible, two groups of four are shown above.
The dashed horizontal group corresponds the the simplified product term AB. The vertical
group corresponds to Boolean CD. Since there are two groups, there will be two product terms
in the Sum-Of-Products result of Qut=AB+CD.

Fold up the corners of the map below like it is a napkin to make the four cells physically
adjacent.
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CQut = ABCD+ ABCD+ ABCD+ ABCD

CD
Ap\00 01 11 10

00|17 11 ] -
o1| | i
11| |
10| 1,{ 1™
/ N |:|
Qut = BD )

The four cells above are a group of four because they all have the Boolean variables B’ and
D’ in common. In other words, B=0 for the four cells, and D=0 for the four cells. The other
variables (A, B) are 0 in some cases, 1 in other cases with respect to the four corner cells. Thus,
these variables (A, B) are not involved with this group of four. This single group comes out of
the map as one product term for the simplified result: Out=B’C’

For the K-map below, roll the top and bottom edges into a cylinder forming eight adjacent
cells.

Qut= ABCD + ABCD + ABCD + ABCD
+ ABCD +ABCD + ABCD + ABCD

CD
ApN00 01 11 10
00\ [1 |1 |1/
o1 [-1--7
11 |11~

10111 (1]|1}

|

The above group of eight has one Boolean variable in common: B=0. Therefore, the one
group of eight is covered by one p-term: B’. The original eight term Boolean expression simpli-
fies to Out=B’

The Boolean expression below has nine p-terms, three of which have three Booleans instead
of four. The difference is that while four Boolean variable product terms cover one cell, the
three Boolean p-terms cover a pair of cells each.
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Cut = ABCD+ ABCD+ ABCD+ ABCD
+ BCD+ BCD+ ABCD+ ABD+ ABCD

CD CD
ARN00 01 11 10 Apy00 01 1110

00[1 |1 |1 |2 0041\ 1 |1 JA |
011 1% o1|1) [ (1 D
111! T ) | 1] /
101111 1001 11y /
AT N H
\B/Ojt= B +D

The six product terms of four Boolean variables map in the usual manner above as single
cells. The three Boolean variable terms (three each) map as cell pairs, which is shown above.
Note that we are mapping p-terms into the K-map, not pulling them out at this point.

For the simplification, we form two groups of eight. Cells in the corners are shared with
both groups. This is fine. In fact, this leads to a better solution than forming a group of eight
and a group of four without sharing any cells. Final Solution is Qut=B’+D’

Below we map the unsimplified Boolean expression to the Karnaugh map.

Qut= ABCD+ ABCD+ ABCD+ ABCD

CD .
ApND0; 01 11 10

oolTy | qi |
01

11 1

10 /1,

T T
|
I

Qut = BCD + ABD + ABCD

Above, three of the cells form into a groups of two cells. A fourth cell cannot be combined
with anything, which often happens in "real world” problems. In this case, the Boolean p-term
ABCD is unchanged in the simplification process. Result: Out= B’C’'D’+A’'B’D’+ABCD

Often times there is more than one minimum cost solution to a simplification problem. Such
is the case illustrated below.
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CQut= ABCD+ ABCD+ ABCD+ ABCD
+ ABCD + ABCD + ABCD + ABCD

ABC%oim 11 10 ABC%O 01 11 10

00{4 |0\ 00 | D

o1| " /N o1 |C[D

11 |n 11 1

A | | wEh | T :

Qut='BTD + ACTD + BCD + ACD
Qut= ABC + ABD + ABC + ABD

Both results above have four product terms of three Boolean variable each. Both are equally
valid minimal cost solutions. The difference in the final solution is due to how the cells are
grouped as shown above. A minimal cost solution is a valid logic design with the minimum
number of gates with the minimum number of inputs.

Below we map the unsimplified Boolean equation as usual and form a group of four as a
first simplification step. It may not be obvious how to pick up the remaining cells.

Qut= ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD

CD CD CD
ARN00 01 1110  ApN00 01 1110 A 00 01 11 10
00|(1]1)]1 00| [x]1)[a 00| [ [2)[1;
o1|lala)h o1|l A o1 [/l
11{1[1 2 11{ 11 [1] 111 [t fe

10 10 10 .

Qut= AC + AD + BC + BD

Pick up three more cells in a group of four, center above. There are still two cells remaining.
the minimal cost method to pick up those is to group them with neighboring cells as groups of
four as at above right.

On a cautionary note, do not attempt to form groups of three. Groupings must be powers of
2,thatis, 1,2,4,8 ...

Below we have another example of two possible minimal cost solutions. Start by forming a
couple of groups of four after mapping the cells.
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Qut = ABCD+ABCD+ABCD+ABCD+ABTCD
+ABCD + ABCD + ABCD + ABCD

CD CD
Ap\00 01 11 10 Ap\00 01 11 10

oof1| J1° 00/1\ [1°
01| 1 :’Il ‘. 01 1 :’ll ‘.
11(1"1;' 11 1 llf
108 1\ 1, 1001 1, 0

Qut= CD + CD+ ABC
Qut= CD + CD+ ABD

The two solutions depend on whether the single remaining cell is grouped with the first or
the second group of four as a group of two cells. That cell either comes out as either ABC’ or
ABD, your choice. Either way, this cell is covered by either Boolean product term. Final results
are shown above.

Below we have an example of a simplification using the Karnaugh map at left or Boolean
algebra at right. Plot C’ on the map as the area of all cells covered by address C=0, the 8-cells
on the left of the map. Then, plot the single ABCD cell. That single cell forms a group of 2-cell
as shown, which simplifies to P-term ABD, for an end result of Out = C’ + ABD.

Qut = C+ABCD Sinmplification by Bool ean
\1 Al gebra
CD \
Ap\00 01 111 10
00 (4 |1\ Qut= T+ABCD
o1 11|
11 i1 g;b Applyingrule A + AB = A + B to
'\ ' the C + ABCDterm
10| | 1/ \ 0
Qut= © + ABD Qut= T + ABD

This (above) is a rare example of a four variable problem that can be reduced with Boolean
algebra without a lot of work, assuming that you remember the theorems.

8.8 Minterm vs maxterm solution

So far we have been finding Sum-Of-Product (SOP) solutions to logic reduction problems. For
each of these SOP solutions, there is also a Product-Of-Sums solution (POS), which could be
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more useful, depending on the application. Before working a Product-Of-Sums solution, we
need to introduce some new terminology. The procedure below for mapping product terms
is not new to this chapter. We just want to establish a formal procedure for minterms for
comparison to the new procedure for maxterms.

— Qut= ABT
Qut= ABC
Mnterme ABC Mntermre ABTC
Numeric= 111 Nuneric= 010
BC BC
ANX00 onm AX00 01110/
o |0 o o]0 o (0o]o|o|i
1 (o {o[1']o 1 |o{o]o|o
Qut= ABC Qut= ABT

A minterm is a Boolean expression resulting in 1 for the output of a single cell, and 0s for all
other cells in a Karnaugh map, or truth table. If a minterm has a single 1 and the remaining
cells as 0s, it would appear to cover a minimum area of 1s. The illustration above left shows
the minterm ABC, a single product term, as a single 1 in a map that is otherwise 0s. We
have not shown the 0s in our Karnaugh maps up to this point, as it is customary to omit them
unless specifically needed. Another minterm A’'BC’ is shown above right. The point to review
is that the address of the cell corresponds directly to the minterm being mapped. That is, the
cell 111 corresponds to the minterm ABC above left. Above right we see that the minterm
A’BC’ corresponds directly to the cell 010. A Boolean expression or map may have multiple
minterms.

Referring to the above figure, Let’s summarize the procedure for placing a minterm in a
K-map:

e Identify the minterm (product term) term to be mapped.
e Write the corresponding binary numeric value.
e Use binary value as an address to place a 1 in the K-map

e Repeat steps for other minterms (P-terms within a Sum-Of-Products).

Qut= ABC +ABC

BC

A\00 011110

0 |00 101

1 (oo Ao
) S

Nuneric= 010 111

Mnterme ABC ABC
Qut= ABC + ABC
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A Boolean expression will more often than not consist of multiple minterms corresponding
to multiple cells in a Karnaugh map as shown above. The multiple minterms in this map are
the individual minterms which we examined in the previous figure above. The point we review
for reference is that the 1s come out of the K-map as a binary cell address which converts
directly to one or more product terms. By directly we mean that a 0 corresponds to a comple-
mented variable, and a 1 corresponds to a true variable. Example: 010 converts directly to
A’BC’. There was no reduction in this example. Though, we do have a Sum-Of-Products result
from the minterms.

Referring to the above figure, Let’s summarize the procedure for writing the Sum-Of-Products
reduced Boolean equation from a K-map:

e Form largest groups of 1s possible covering all minterms. Groups must be a power of 2.
e Write binary numeric value for groups.

e Convert binary value to a product term.

e Repeat steps for other groups. Each group yields a p-terms within a Sum-Of-Products.

Nothing new so far, a formal procedure has been written down for dealing with minterms.
This serves as a pattern for dealing with maxterms.
Next we attack the Boolean function which is 0 for a single cell and 1s for all others.

Qut = ( A+B+C)
Maxterm= A+B+C
Nuneric = 1 1 1

Conmplenent = 0 0 O

BC
AN00/011110
olol1]1]2

1(1(1]1]1

A maxterm is a Boolean expression resulting in a 0 for the output of a single cell expression,
and 1s for all other cells in the Karnaugh map, or truth table. The illustration above left shows
the maxterm (A+B+C), a single sum term, as a single 0 in a map that is otherwise 1s. If a
maxterm has a single 0 and the remaining cells as 1s, it would appear to cover a maximum
area of 1s.

There are some differences now that we are dealing with something new, maxterms. The
maxterm is a 0, not a 1 in the Karnaugh map. A maxterm is a sum term, (A+B+C) in our
example, not a product term.

It also looks strange that (A+B+C) is mapped into the cell 000. For the equation OQut=(A+B+C)=0,
all three variables (A, B, C) must individually be equal to 0. Only (0+0+0)=0 will equal 0. Thus
we place our sole 0 for minterm (A+B+C) in cell A,B,C=000 in the K-map, where the inputs
are all0 . This is the only case which will give us a 0 for our maxterm. All other cells contain
1s because any input values other than ((0,0,0) for (A+B+C) yields 1s upon evaluation.

Referring to the above figure, the procedure for placing a maxterm in the K-map is:
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e Identify the Sum term to be mapped.

e Write corresponding binary numeric value.

e Form the complement

e Use the complement as an address to place a 0 in the K-map

e Repeat for other maxterms (Sum terms within Product-of-Sums expression).

Qut = (A+B+0C)
Maxterm = A+B+TC
Nuneric = 0O 0O

Conmpl enent = 111

e

A\00 0111[10

ol1]1]1]a

1 (1(110(1

Another maxterm A’+B’+C’ is shown above. Numeric 000 corresponds to A’+B’+C’. The
complement is 111. Place a 0 for maxterm (A’+B’+C’) in this cell (1,1,1) of the K-map as
shown above.

Why should (A’+B’+C’) cause a 0 to be in cell 111? When A’+B’+C’ is (1’+1°+1’), all 1s in,
which is (0+0+0) after taking complements, we have the only condition that will give us a 0.
All the 1s are complemented to all Os, which is 0 when ORed.

Qut = ( A+B+C)( A+B+TC)
Maxterm= (A+B+C) Maxt erne (A+B+C)

Nuneric= 1 1 1 Nuneric= 1 1 O
Complement= 0 0 O Conplenent= 0 0 1

C
A oo/ 11110

0 (0011 |1
111111

A Boolean Product-Of-Sums expression or map may have multiple maxterms as shown
above. Maxterm (A+B+C) yields numeric 111 which complements to 000, placing a 0 in cell
(0,0,0). Maxterm (A+B+C’) yields numeric 110 which complements to 001, placing a 0 in cell
(0,0,1).

Now that we have the k-map setup, what we are really interested in is showing how to
write a Product-Of-Sums reduction. Form the 0s into groups. That would be a group of two
below. Write the binary value corresponding to the sum-term which is (0,0,X). Both A and B
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are 0 for the group. But, C is both 0 and 1 so we write an X as a place holder for C. Form
the complement (1,1,X). Write the Sum-term (A+B) discarding the C and the X which held its’
place. In general, expect to have more sum-terms multiplied together in the Product-Of-Sums
result. Though, we have a simple example here.

Qut = ( A+B+C)( A+B+T)

C
AN00 011110
0o @O |1
1111 ]2

j—

ABC=00X

Complenment =1 1 X
Sumterm=(A+B)
Qut =(A+B) ]

Let’s summarize the procedure for writing the Product-Of-Sums Boolean reduction for a
K-map:

e Form largest groups of Os possible, covering all maxterms. Groups must be a power of 2.

Write binary numeric value for group.

Complement binary numeric value for group.

Convert complement value to a sum-term.

Repeat steps for other groups. Each group yields a sum-term within a Product-Of-Sums
result.

Example:

Simplify the Product-Of-Sums Boolean expression below, providing a result in POS form.

Qut= (A+B+C+D)( A+B+C+D) ( A+B+C+D) ( A+B+C+D)
(A+B+C+D)( A+B+C+D) (A+B+TC+D)

Solution:

Transfer the seven maxterms to the map below as 0s. Be sure to complement the input
variables in finding the proper cell location.
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u
Qut= ( A+B+C+D) ( A+B+C+D) ( A+B+C+D) ( A+B+C+D)
(A+B+C+D) ( A+B+C+D) ( A+B+C+D)

CD
AB\00 01 1110

00 0 0
01 0 0
11 0
10 o+70

We map the Os as they appear left to right top to bottom on the map above. We locate the
last three maxterms with leader lines..

Once the cells are in place above, form groups of cells as shown below. Larger groups will
give a sum-term with fewer inputs. Fewer groups will yield fewer sum-terms in the result.

A CD i nput conpl ement Sumterm
B\00 011110~ agcp = X001 > X110 > ( B+ C+D)
00| |/} ABCD = 0X01 > 1X10 > ( A+C+D)
o1 o/ ABCD = XX10 > XX01 > (T+D)

11 \

10 |0, \

ut= (B+C+D) (A+C+D)(T+D)

oooé

We have three groups, so we expect to have three sum-terms in our POS result above. The
group of 4-cells yields a 2-variable sum-term. The two groups of 2-cells give us two 3-variable
sum-terms. Details are shown for how we arrived at the Sum-terms above. For a group, write
the binary group input address, then complement it, converting that to the Boolean sum-term.
The final result is product of the three sums.

Example:

Simplify the Product-Of-Sums Boolean expression below, providing a result in SOP form.

Qut= (A+B+C+D)( A+B+C+D) ( A+B+C+D) ( A+B+C+D)
(A+B+C+D)( A+B+C+D) (A+B+TC+D)

Solution:

This looks like a repeat of the last problem. It is except that we ask for a Sum-Of-Products
Solution instead of the Product-Of-Sums which we just finished. Map the maxterm 0s from the
Product-Of-Sums given as in the previous problem, below left.
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Qut= ( A+B+C+D) ( A+B+C+D) ( A+B+C+D) ( A+B+C+D)
(A+B+C+D) ( A+B+C+D) ( A+B+C+D)

CD CD
AB\00 01 1110 AB\00 01 1110
00| |0 0 001|010
01| |o 0 0111]0 |1 |0
11 0 11111 |20
10| |o 0 10|1|o|1 |0

Then fill in the implied 1s in the remaining cells of the map above right.

CD
ARN00 01 11 10
00/ 1\0 11 o
01 11 fo

11|l

10} 140 {1 fo

RlR| R

Qut= CD + CD+ ABD

Form groups of 1s to cover all 1s. Then write the Sum-Of-Products simplified result as in
the previous section of this chapter. This is identical to a previous problem.

Qut= (A+B+C+D) ( A+B+C+D) ( A+B+C+D) ( A+B+C+D)
(A+B+C+D)( A+B+C+D) ( A+B+C+D)

ABC[())O 01,11 10 ABC%O 01 1110
oo| |0y oY oof1\ f1°
o1 Jo) [o o 1] [t}
11 0 | 11 1 1 ;‘
10 |0 lo 1001] {1,

Qut= CD + CD+ ABD
Qut= (B+C+D) (A+C+D)( C+D)

Above we show both the Product-Of-Sums solution, from the previous example, and the
Sum-Of-Products solution from the current problem for comparison. Which is the simpler
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solution? The POS uses 3-OR gates and 1-AND gate, while the SOP uses 3-AND gates and
1-OR gate. Both use four gates each. Taking a closer look, we count the number of gate inputs.
The POS uses 8-inputs; the SOP uses 7-inputs. By the definition of minimal cost solution, the
SOP solution is simpler. This is an example of a technically correct answer that is of little use
in the real world.

The better solution depends on complexity and the logic family being used. The SOP solu-
tion is usually better if using the TTL logic family, as NAND gates are the basic building block,
which works well with SOP implementations. On the other hand, A POS solution would be
acceptable when using the CMOS logic family since all sizes of NOR gates are available.

Qut= (B+C+D) (A+C+D)( CT+D) Qut= CD + CD+ ABD

Out

The gate diagrams for both cases are shown above, Product-Of-Sums left, and Sum-Of-
Products right.

Below, we take a closer look at the Sum-Of-Products version of our example logic, which is
repeated at left.

Qut= CD + CD+ ABD
Qut= CD + CD+ ABD

N SO s = S
N T [

Above all AND gates at left have been replaced by NAND gates at right.. The OR gate at
the output is replaced by a NAND gate. To prove that AND-OR logic is equivalent to NAND-
NAND logic, move the inverter invert bubbles at the output of the 3-NAND gates to the input
of the final NAND as shown in going from above right to below left.
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X |: Out

Y

Z
C Out Qut= XYZ DeMorgans

[ .

D L Qut= X+Y+Z Double negation
A Qut = X+Y+Z
B X Out

Y

z

Qut = X+Y+Z

Above right we see that the output NAND gate with inverted inputs is logically equivalent
to an OR gate by DeMorgan’s theorem and double negation. This information is useful in
building digital logic in a laboratory setting where TTL logic family NAND gates are more
readily available in a wide variety of configurations than other types.

The Procedure for constructing NAND-NAND logic, in place of AND-OR logic is as follows:

e Produce a reduced Sum-Of-Products logic design.

e When drawing the wiring diagram of the SOP, replace all gates (both AND and OR) with
NAND gates.

e Unused inputs should be tied to logic High.

e In case of troubleshooting, internal nodes at the first level of NAND gate outputs do
NOT match AND-OR diagram logic levels, but are inverted. Use the NAND-NAND logic
diagram. Inputs and final output are identical, though.

e Label any multiple packages U1, U2,.. etc.

e Use data sheet to assign pin numbers to inputs and outputs of all gates.

Example:

Let us revisit a previous problem involving an SOP minimization. Produce a Product-Of-
Sums solution. Compare the POS solution to the previous SOP.
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Qut= ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD

CD CD CD
AR\00 01 1110  Ap\00 01 1110  ARN00 01 11 10
00 |1 [1][a: 00 0| 00 0\
o1 {{L[a]]o) 01 o| o1 lo!
11 {11 [ ]1) 11 0| 11 lo |
10 10{o o o [o | 10|00 o {03 .
Qut= AC + AD + BC + BD Qut= (A+B) ( T+D)

Solution:

Above left we have the original problem starting with a 9-minterm Boolean unsimplified
expression. Reviewing, we formed four groups of 4-cells to yield a 4-product-term SOP result,
lower left.

In the middle figure, above, we fill in the empty spaces with the implied 0s. The 0s form
two groups of 4-cells. The solid red group is (A’+B), the dashed red group is (C’+D). This yields
two sum-terms in the Product-Of-Sums result, above right Out = (A’+B)(C’+D)

Comparing the previous SOP simplification, left, to the POS simplification, right, shows
that the POS is the least cost solution. The SOP uses 5-gates total, the POS uses only 3-gates.
This POS solution even looks attractive when using TTL logic due to simplicity of the result.
We can find AND gates and an OR gate with 2-inputs.

C
A
Out
D
[ A
B . B Out
B amlpol
D
Qut= AC + AD + BC + BD Qut= (A+B) ( CT+D)

The SOP and POS gate diagrams are shown above for our comparison problem.
Given the pin-outs for the TTL logic family integrated circuit gates below, label the maxterm
diagram above right with Circuit designators (Ul-a, Ul-b, U2-a, etc), and pin numbers.
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WEREMEER R

) 7408 )\/0:432‘\—I§|
TR 2

3laiaiaiaiaia aiaiaaia

piziziala

)“‘:C P e :

’-I>j ’-I>j ’-I>j a\D th=(7*+B)(C+D)
1) 2] s el o] 17

Each integrated circuit package that we use will receive a circuit designator: U1, U2, U3.
To distinguish between the individual gates within the package, they are identified as a, b, c,
d, etc. The 7404 hex-inverter package is Ul. The individual inverters in it are are Ul-a, Ul-b,
Ul-c, etc. U2 is assigned to the 7432 quad OR gate. U3 is assigned to the 7408 quad AND gate.
With reference to the pin numbers on the package diagram above, we assign pin numbers to
all gate inputs and outputs on the schematic diagram below.

We can now build this circuit in a laboratory setting. Or, we could design a printed circuit
board for it. A printed circuit board contains copper foil "wiring” backed by a non conductive
substrate of phenolic, or epoxy-fiberglass. Printed circuit boards are used to mass produce
electronic circuits. Ground the inputs of unused gates.

]
> ]

w)
O

1AV

]
]
(]
[~]

14

5]
F]

Ul-a U2-a
Al {>c2 1 3
B 2 ) U3-a
1
Ul-b 3
U2-b 5
c_3 [:>C4 g }:::}i_r' Out
D Ul = 7404
2 = 7432
Qut= (A+B) ( C+D) U3 = 7408

Label the previous POS solution diagram above left (third figure back) with Circuit desig-
nators and pin numbers. This will be similar to what we just did.
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We can find 2-input AND gates, 7408 in the previous example. However, we have trouble
finding a 4-input OR gate in our TTL catalog. The only kind of gate with 4-inputs is the 7420
NAND gate shown above right.

We can make the 4-input NAND gate into a 4-input OR gate by inverting the inputs to the
NAND gate as shown below. So we will use the 7420 4-input NAND gate as an OR gate by
inverting the inputs.

Y= AB=A+B DeMorgan’s

Y=A+B Double negation } — _D
— —

We will not use discrete inverters to invert the inputs to the 7420 4-input NAND gate, but
will drive it with 2-input NAND gates in place of the AND gates called for in the SOP, minterm,
solution. The inversion at the output of the 2-input NAND gates supply the inversion for the
4-input OR gate.

6

Out

Ul = 7404
U2 = 7400
U3 = 7420

Qut= ( AC) ( AD) ( BC) ( BD) Boolean from diagram

Qut= AC + AD + BC + BD DeMorgan’s
Qut= AC + AD + BC + BD Double negation
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The result is shown above. It is the only practical way to actually build it with TTL gates
by using NAND-NAND logic replacing AND-OR logic.

8.9 Y (sum) and II (product) notation

For reference, this section introduces the terminology used in some texts to describe the minterms
and maxterms assigned to a Karnaugh map. Otherwise, there is no new material here.

Y (sigma) indicates sum and lower case "m” indicates minterms. >m indicates sum of
minterms. The following example is revisited to illustrate our point. Instead of a Boolean
equation description of unsimplified logic, we list the minterms.

f(A,B,C,D) =¥ m(1, 2, 3,4,5,7,8,9,11, 12, 13, 15)
or

f(A’B’CyD) = E(Inl ,N2,M3,My,Ms5,M7,Mg,Mg,M77,MMN12,N73 7m15)

The numbers indicate cell location, or address, within a Karnaugh map as shown below
right. This is certainly a compact means of describing a list of minterms or cells in a K-map.

Qut= ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD

f(A B, CD=yYymo,1,3,4,5,7,12, 13, 15)

CD CD CD
AB\00 01 1110 ApR\00 01 1110 ANO00 01 1110

00|of1 |3]2| o0j1]1fn 00 [ Mo
01f{4]s [7]6 | o1]1f1 o 01;(uJ_)!o
11hop3 fispa| 111]1 2 111 W[ o
108 fo fr1jio]| 120 10{0 fo fo fo

f(AB,CD = AC + AD + BC + BD

The Sum-Of-Products solution is not affected by the new terminology. The minterms, 1s, in
the map have been grouped as usual and a Sum-OF-Products solution written.

Below, we show the terminology for describing a list of maxterms. Product is indicated by
the Greek II (pi), and upper case "M” indicates maxterms. IIM indicates product of maxterms.
The same example illustrates our point. The Boolean equation description of unsimplified
logic, is replaced by a list of maxterms.
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f(A,B,C,D) =11 M(2, 6, 8, 9, 10, 11, 14)
or

f(A’B’CyD) = H(MQ’ M67 M87 MQ, MlO’ Mll) M14)

Once again, the numbers indicate K-map cell address locations. For maxterms this is the
location of 0s, as shown below. A Product-OF-Sums solution is completed in the usual manner.

Qut= (A+B+C+D) (A+B+C+D) (A+B+C+D) ( A+B+C+D)
(A+B+C+D)( A+B+C+ D) ( A+B+C+D)

f(A B, CD=TM28,8, 9,10, 11, 14)

CD CD CD
AB\OO 01 1110 Ap\00 01 1110 ANO00 01 1110

00| of1 |3f2] 00 0| o0 0,
01l4ls5 |7 |ls 01 0 01 0!
11ho k3 asha| 112 o] 11 0,
10| 8|9 |r11ho| 100 [0 |o |o 1000 [0 o

f(A B, C D= (A+B) ( C+D)

8.10 Don’t care cells in the Karnaugh map

Up to this point we have considered logic reduction problems where the input conditions were
completely specified. That is, a 3-variable truth table or Karnaugh map had 2" = 23 or 8-
entries, a full table or map. It is not always necessary to fill in the complete truth table for
some real-world problems. We may have a choice to not fill in the complete table.

For example, when dealing with BCD (Binary Coded Decimal) numbers encoded as four
bits, we may not care about any codes above the BCD range of (0, 1, 2...9). The 4-bit binary
codes for the hexadecimal numbers (Ah, Bh, Ch, Eh, Fh) are not valid BCD codes. Thus, we
do not have to fill in those codes at the end of a truth table, or K-map, if we do not care to.
We would not normally care to fill in those codes because those codes (1010, 1011, 1100, 1101,
1110, 1111) will never exist as long as we are dealing only with BCD encoded numbers. These
six invalid codes are don’t cares as far as we are concerned. That is, we do not care what output
our logic circuit produces for these don’t cares.
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Don’t cares in a Karnaugh map, or truth table, may be either 1s or 0s, as long as we don’t
care what the output is for an input condition we never expect to see. We plot these cells with
an asterisk, *, among the normal 1s and 0s. When forming groups of cells, treat the don’t care
cell as either a 1 or a 0, or ignore the don’t cares. This is helpful if it allows us to form a larger
group than would otherwise be possible without the don’t cares. There is no requirement to
group all or any of the don’t cares. Only use them in a group if it simplifies the logic.

BC BC BC
A\ 00 01 11 10 AN 00 01 11 10 A\ 00 01 11 10
olo |o|o|o olo |o oo 0 f0°o o [0
1|0 [0« |+ 10 (1 ]«)+ 100/ 1]« |
Qut = ABC Qut = AC 7/ input comp- Sum

! | ement term

= XX0 > XX1 > C
ABC = OXX > 1XX > A
ot = AC ( POS)

Above is an example of a logic function where the desired output is 1 for input ABC = 101
over the range from 000 to 101. We do not care what the output is for the other possible
inputs (110, 111). Map those two as don’t cares. We show two solutions. The solution on the
right Out = AB’C is the more complex solution since we did not use the don’t care cells. The
solution in the middle, Out=AC, is less complex because we grouped a don’t care cell with the
single 1 to form a group of two. The third solution, a Product-Of-Sums on the right, results
from grouping a don’t care with three zeros forming a group of four 0s. This is the same, less
complex, Out=AC. We have illustrated that the don’t care cells may be used as either 1s or Os,
whichever is useful.

generator

/tach- iy .
ometer Amazlamp logic =

OPOO®

The electronics class of Lightning State College has been asked to build the lamp logic for a
stationary bicycle exhibit at the local science museum. As a rider increases his pedaling speed,
lamps will light on a bar graph display. No lamps will light for no motion. As speed increases,
the lower lamp, L1 lights, then L1 and L2, then, L1, L2, and L3, until all lamps light at the
highest speed. Once all the lamps illuminate, no further increase in speed will have any effect
on the display.

A small DC generator coupled to the bicycle tire outputs a voltage proportional to speed. It
drives a tachometer board which limits the voltage at the high end of speed where all lamps
light. No further increase in speed can increase the voltage beyond this level. This is crucial
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because the downstream A to D (Analog to Digital) converter puts out a 3-bit code, ABC, 23 or
8-codes, but we only have five lamps. A is the most significant bit, C the least significant bit.

The lamp logic needs to respond to the six codes out of the A to D. For ABC=000, no motion,
no lamps light. For the five codes (001 to 101) lamps L1, L1&L2, L1&L2&L3, up to all lamps
will light, as speed, voltage, and the A to D code (ABC) increases. We do not care about the
response to input codes (110, 111) because these codes will never come out of the A to D due
to the limiting in the tachometer block. We need to design five logic circuits to drive the five
lamps.

L1.BC L2 «BC L3 BC

AN 00 01 11 10 AN 00 01 11 10 AN 00 01 11 10
olo |1 ([Tt olo |o |11 olo |o |10
1 (Tl *E} 1 ( 1 * * 1 ( 1 I\\*/,’D
L1 =A+B+C L2 = A+ B L3 = A+ BC
L4 BC L5 BC

AN 00 01 11 10 AN 00 01 11 10

olo0 o [o o olo |o |o o

1 ( 1|+ > SNCDE

L4 = A L5 = AC

Since, none of the lamps light for ABC=000 out of the A to D, enter a 0 in all K-maps for
cell ABC=000. Since we don’t care about the never to be encountered codes (110, 111), enter
asterisks into those two cells in all five K-maps.

Lamp L5 will only light for code ABC=101. Enter a 1 in that cell and five 0s into the
remaining empty cells of L5 K-map.

L4 will light initially for code ABC=100, and will remain illuminated for any code greater,
ABC=101, because all lamps below L5 will light when L5 lights. Enter 1s into cells 100 and
101 of the L4 map so that it will light for those codes. Four O’s fill the remaining L4 cells

L3 will initially light for code ABC=011. It will also light whenever L5 and L4 illuminate.
Enter three 1s into cells 011, 100, 101 for L.3 map. Fill three 0s into the remaining L3 cells.

L2 lights for ABC=010 and codes greater. Fill 1s into cells 010, 011, 100, 101, and two Os
in the remaining cells.

The only time L1 is not lighted is for no motion. There is already a 0 in cell ABC=000. All
the other five cells receive 1s.

Group the 1’s as shown above, using don’t cares whenever a larger group results. The L1
map shows three product terms, corresponding to three groups of 4-cells. We used both don’t
cares in two of the groups and one don’t care on the third group. The don’t cares allowed us to
form groups of four.

In a similar manner, the L2 and L4 maps both produce groups of 4-cells with the aid of
the don’t care cells. The L4 reduction is striking in that the L4 lamp is controlled by the most
significant bit from the A to D converter, L5=A. No logic gates are required for lamp L4. In
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the L3 and L5 maps, single cells form groups of two with don’t care cells. In all five maps, the
reduced Boolean equation is less complex than without the don’t cares.

A M L5t5VDCA
T A E—>o—4+w~
5x470Q

U3a
7408 7406

. W
4
. A+BC
B | Ul b

7432

U3b M
L3
—AV—
>
u3d
- i
U3e

A+B+C
U2c

The gate diagram for the circuit is above. The outputs of the five K-map equations drive
inverters. Note that the L1 OR gate is not a 3-input gate but a 2-input gate having inputs
(A+B), C, outputting A+B+C The open collector inverters, 7406, are desirable for driving
LEDs, though, not part of the K-map logic design. The output of an open collecter gate or
inverter is open circuited at the collector internal to the integrated circuit package so that all
collector current may flow through an external load. An active high into any of the inverters
pulls the output low, drawing current through the LED and the current limiting resistor. The
LEDs would likely be part of a solid state relay driving 120VAC lamps for a museum exhibit,
not shown here.

8.11 Larger 5 & 6-variable Karnaugh maps

Larger Karnaugh maps reduce larger logic designs. How large is large enough? That depends
on the number of inputs, fan-ins, to the logic circuit under consideration. One of the large
programmable logic companies has an answer.

Altera’s own data, extracted from its library of customer designs, supports the
value of heterogeneity. By examining logic cones, mapping them onto LUT-based
nodes and sorting them by the number of inputs that would be best at each node,
Altera found that the distribution of fan-ins was nearly flat between two and six
inputs, with a nice peak at five.
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The answer is no more than six inputs for most all designs, and five inputs for the average
logic design. The five variable Karnaugh map follows.

CDE
Ap\Q00 001 011010 110 111 101 100

00
01

11

10

5- variable Karnaugh map (Gray code)

The older version of the five variable K-map, a Gray Code map or reflection map, is shown
above. The top (and side for a 6-variable map) of the map is numbered in full Gray code. The
Gray code reflects about the middle of the code. This style map is found in older texts. The
newer preferred style is below.

CDE
000 001 011010 100 101 111 110
00
01
11
10

5- variable Karnaugh map (overlay)

The overlay version of the Karnaugh map, shown above, is simply two (four for a 6-variable
map) identical maps except for the most significant bit of the 3-bit address across the top. If
we look at the top of the map, we will see that the numbering is different from the previous
Gray code map. If we ignore the most significant digit of the 3-digit numbers, the sequence 00,
01, 11, 10 is at the heading of both sub maps of the overlay map. The sequence of eight 3-digit
numbers is not Gray code. Though the sequence of four of the least significant two bits is.

Let’s put our 5-variable Karnaugh Map to use. Design a circuit which has a 5-bit binary
input (A, B, C, D, E), with A being the MSB (Most Significant Bit). It must produce an output
logic High for any prime number detected in the input data.
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/ABCD
1 irror line _  _
BCE l\_> <_K§E ACDE .
CDE : \
AR ommmlm 100 ‘,
apERaoRl,
1 (4 ) 1/1 !
00 &Ky-l/ [~ : S
01 /1/ W1 k---f
11 AT
o [ T
T - :
AEDE ABCE

5- variable Karnaugh map (Gray code)

We show the solution above on the older Gray code (reflection) map for reference. The
prime numbers are (1,2,3,5,7,11,13,17,19,23,29,31). Plot a 1 in each corresponding cell. Then,
proceed with grouping of the cells. Finish by writing the simplified result. Note that 4-cell
group A'B’E consists of two pairs of cell on both sides of the mirror line. The same is true of
the 2-cell group AB’DE. It is a group of 2-cells by being reflected about the mirror line. When
using this version of the K-map look for mirror images in the other half of the map.

Out = ABE + BCE + ACDE + ACDE + ABCE + ABDE + AB'CD

Below we show the more common version of the 5-variable map, the overlay map.

|

BCE,ABCD _~ACDE - —
( Age ACDE,
CDE ‘ \
A3 oop| 001 G11jo10 100 O™ 111 110
N\t /ﬁ\ ,"
oo| {3 L] Ja iy
01 \\~¥§f K
7 'me'
10 {1\} (1
U

ABDE _4pCE

5- variable Karnaugh map (overlay)

If we compare the patterns in the two maps, some of the cells in the right half of the map
are moved around since the addressing across the top of the map is different. We also need to



268 CHAPTER 8. KARNAUGH MAPPING

take a different approach at spotting commonality between the two halves of the map. Overlay
one half of the map atop the other half. Any overlap from the top map to the lower map is a
potential group. The figure below shows that group AB'DE is composed of two stacked cells.
Group A'B’E consists of two stacked pairs of cells.

For the A’'B’E group of 4-cells ABCDE = 00xx1 for the group. That is A,B,E are the same
001 respectively for the group. And, CD=xx that is it varies, no commonality in CD=xx for the
group of 4-cells. Since ABCDE = 00xx1, the group of 4-cells is covered by A’B’XXE = A’B’E.

000 (001 11] 010 —

= BE
00 1 @ [ .
o \\@ 101 /4110
RS
imruEn

Qo
A%

The above 5-variable overlay map is shown stacked.

An example of a six variable Karnaugh map follows. We have mentally stacked the four sub
maps to see the group of 4-cells corresponding to Out = C’F’
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DEF
ABC\_000 001 011 010
000
110
001
010
011
110
010 1\\
010‘ 1
110‘ 1 \
Qut = CF 110‘ 1

A magnitude comparator (used to illustrate a 6-variable K-map) compares two binary num-
bers, indicating if they are equal, greater than, or less than each other on three respective
outputs. A three bit magnitude comparator has two inputs A;A;Ay and BoB; By An integrated
circuit magnitude comparator (7485) would actually have four inputs, But, the Karnaugh map
below needs to be kept to a reasonable size. We will only solve for the A>B output.

Below, a 6-variable Karnaugh map aids simplification of the logic for a 3-bit magnitude
comparator. This is an overlay type of map. The binary address code across the top and down
the left side of the map is not a full 3-bit Gray code. Though the 2-bit address codes of the
four sub maps is Gray code. Find redundant expressions by stacking the four sub maps atop
one another (shown above). There could be cells common to all four maps, though not in the
example below. It does have cells common to pairs of sub maps.

— | A Magnitude A<B
Comparator a=p

B A>B

The A>B output above is ABC>XYZ on the map below.
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z
ABE)Q 000 001 011 010 100 101 111 110
000

001 f\/\
@) ] ()

Z\

1
|
gt
1011
1
\'\]{\

1
BB A

1 Al 1]
e

Qut = AX+ABY+BXY+ABCZ+ACYZ+BCXZ+CXYZ
6- variable Karnaugh map (overlay)

Where ever ABC is greater than XYZ, a 1 is plotted. In the first line ABC=000 cannot be
greater than any of the values of XYZ. No 1s in this line. In the second line, ABC=001, only
the first cell ABCXYZ= 001000 is ABC greater than XYZ. A single 1 is entered in the first cell
of the second line. The fourth line, ABC=010, has a pair of 1s. The third line, ABC=011 has
three 1s. Thus, the map is filled with 1s in any cells where ABC is greater than XXZ.

In grouping cells, form groups with adjacent sub maps if possible. All but one group of
16-cells involves cells from pairs of the sub maps. Look for the following groups:

e 1 group of 16-cells
e 2 groups of 8-cells
e 4 groups of 4-cells

The group of 16-cells, AX’ occupies all of the lower right sub map; though, we don’t circle it on
the figure above.

One group of 8-cells is composed of a group of 4-cells in the upper sub map overlaying a
similar group in the lower left map. The second group of 8-cells is composed of a similar group
of 4-cells in the right sub map overlaying the same group of 4-cells in the lower left map.

The four groups of 4-cells are shown on the Karnaugh map above with the associated prod-
uct terms. Along with the product terms for the two groups of 8-cells and the group of 16-cells,
the final Sum-Of-Products reduction is shown, all seven terms. Counting the 1s in the map,
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there is a total of 16+6+6=28 ones. Before the K-map logic reduction there would have been
28 product terms in our SOP output, each with 6-inputs. The Karnaugh map yielded seven
product terms of four or less inputs. This is really what Karnaugh maps are all about!

The wiring diagram is not shown. However, here is the parts list for the 3-bit magnitude
comparator for ABC>XYZ using 4 TTL logic family parts:

1 ea 7410 triple 3-input NAND gate AX’, ABY’, BX'Y’
2 ea 7420 dual 4-input NAND gate ABCZ’, ACY’Z’, BCX'Z', CX'Y'Z’
1 ea 7430 8-input NAND gate for output of 7-P-terms

REVIEW:

Boolean algebra, Karnaugh maps, and CAD (Computer Aided Design) are methods of
logic simplification. The goal of logic simplification is a minimal cost solution.

A minimal cost solution is a valid logic reduction with the minimum number of gates with
the minimum number of inputs.

Venn diagrams allow us to visualize Boolean expressions, easing the transition to Kar-
naugh maps.

Karnaugh map cells are organized in Gray code order so that we may visualize redun-
dancy in Boolean expressions which results in simplification.

The more common Sum-Of-Products (Sum of Minters) expressions are implemented as
AND gates (products) feeding a single OR gate (sum).

Sum-Of-Products expressions (AND-OR logic) are equivalent to a NAND-NAND imple-
mentation. All AND gates and OR gates are replaced by NAND gates.

Less often used, Product-Of-Sums expressions are implemented as OR gates (sums) feed-
ing into a single AND gate (product). Product-Of-Sums expressions are based on the 0s,
maxterms, in a Karnaugh map.
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FUNCTIONS
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Original author: David Zitzelsberger

9.1 Introduction

The term "combinational” comes to us from mathematics. In mathematics a combination is an
unordered set, which is a formal way to say that nobody cares which order the items came in.
Most games work this way, if you rolled dice one at a time and get a 2 followed by a 3 it is the
same as if you had rolled a 3 followed by a 2. With combinational logic, the circuit produces

the same output regardless of the order the inputs are changed.

There are circuits which depend on the when the inputs change, these circuits are called
sequential logic. Even though you will not find the term ”sequential logic” in the chapter titles,

the next several chapters will discuss sequential logic.

Practical circuits will have a mix of combinational and sequential logic, with sequential
logic making sure everything happens in order and combinational logic performing functions

like arithmetic, logic, or conversion.

273
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You have already used combinational circuits. Each logic gate discussed previously is a
combinational logic function. Lets follow how two NAND gate works if we provide them inputs
in different orders.

We begin with both inputs being 0.

00

1
[ 1
We then set one input high.
10
—

V— WV

YY Yy

We then set the other input high.

11

o

[

0

Yy

So NAND gates do not care about the order of the inputs, and you will find the same true
of all the other gates covered up to this point (AND, XOR, OR, NOR, XNOR, and NOT).

9.2 A Half-Adder

As a first example of useful combinational logic, let’s build a device that can add two binary
digits together. We can quickly calculate what the answers should be:
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0+0=0 0+1=1 1+0=1 1+1=10,

So we well need two inputs (a and b) and two outputs. The low order output will be called
Y because it represents the sum, and the high order output will be called C,,; because it
represents the carry out.

The truth table is
A[B[Z[C.
0/{0(0] O
0|1|1]| O
1(0|1] O
1(1|0] 1

Simplifying boolean equations or making some Karnaugh map will produce the same circuit
shown below, but start by looking at the results. The X column is our familiar XOR gate, while
the C,,; column is the AND gate. This device is called a half-adder for reasons that will make

sense in the next section.

or in ladder logic

Ly L,
A B >
\m/
/u\
A B
A B Cou

9.3 A Full-Adder

The half-adder is extremely useful until you want to add more that one binary digit quantities.
The slow way to develop a two binary digit adders would be to make a truth table and reduce it.
Then when you decide to make a three binary digit adder, do it again. Then when you decide to
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make a four digit adder, do it again. Then when ... The circuits would be fast, but development
time would be slow.
Looking at a two binary digit sum shows what we need to extend addition to multiple binary
digits.
11
11
11
110
Look at how many inputs the middle column uses. Our adder needs three inputs; a, b, and
the carry from the previous sum, and we can use our two-input adder to build a three input
adder.
Y is the easy part. Normal arithmetic tells us thatif X =a+b + C;,, and X; =a + b, then &
= 21 + Czn

AR
3
B |HA | ¢
L HA | ¢
L L,
A B 5,
\m/
/u\
A B
A B c,
/u\
5 Cp 5
\m/
/u\
Z1 Cin
5 Cp C,

What do we do with C; and C,? Let’s look at three input sums and quickly calculate:
C,+a+b=27?
0+0+0=0 0+0+1= 1 0+1+0= 1 0 +
1 1 10

I+

+
+
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1+0+0=1 1+0+1=10 1+1+0=10 1
1+1=11

If you have any concern about the low order bit, please confirm that the circuit and ladder
calculate it correctly.

In order to calculate the high order bit, notice that it is 1 in both cases when a + b produces
a C;. Also, the high order bit is 1 when a + b produces a ¥; and C;,, is a 1. So We will have a
carry when C; OR (X; AND C;,,). Our complete three input adder is:

A_ 2,
L D2
B HA
— HA
C:in
Cout
Ll I—2
A B N
A B
A B C,
2, Ci, )2
d : N 0
z1 Cin
z1 Cin C2
C1 CZ Cout

For some designs, being able to eliminate one or more types of gates can be important, and
you can replace the final OR gate with an XOR gate without changing the results.

We can now connect two adders to add 2 bit quantities.
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Ay 2,
B, _| HA -
A;— 2
Bl — FA — COUt
L, L,
A, B, \ZO,
AO B0

A, B,
A, B, TC,
TS, C, 9
O
TS, C,
TS, C, TP,
TC, TP, Cou |

N\

AN

A is the low order bit of A, A; is the high order bit of A, By is the low order bit of B, B; is
the high order bit of B, Xis the low order bit of the sum, ¥; is the high order bit of the sum,
and C,,; is the Carry.

A two binary digit adder would never be made this way. Instead the lowest order bits would
also go through a full adder too.
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Cin
Ag_r——_ 3,
B, _|FA _
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There are several reasons for this, one being that we can then allow a circuit to determine
whether the lowest order carry should be included in the sum. This allows for the chaining of
even larger sums. Consider two different ways to look at a four bit sum.

111 1<-+  11<+-
0110 | 01 | 10
1011 | 10 | 11
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_____ S T
10001 1 +-100 +-101

If we allow the program to add a two bit number and remember the carry for later, then
use that carry in the next sum the program can add any number of bits the user wants even
though we have only provided a two-bit adder. Small PLCs can also be chained together for
larger numbers.

These full adders can also can be expanded to any number of bits space allows. As an
example, here’s how to do an 8 bit adder.

Z0 Z1 ZZ ZB Z4 ZS Z6 Z7 Cout
c I I I I I I I | 1
il « < < < < < < <
LL LL LL LL LL LL LL LL

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
A;By, A B, A, B, A;B; A, B, As By As Bs A, B,

This is the same result as using the two 2-bit adders to make a 4-bit adder and then us-
ing two 4-bit adders to make an 8-bit adder or re-duplicating ladder logic and updating the
numbers.

Each ”2+” is a 2-bit adder and made of two full adders. Each "4+” is a 4-bit adder and made
of two 2-bit adders. And the result of two 4-bit adders is the same 8-bit adder we used full
adders to build.

For any large combinational circuit there are generally two approaches to design: you can
take simpler circuits and replicate them; or you can design the complex circuit as a complete
device.

Using simpler circuits to build complex circuits allows a you to spend less time designing
but then requires more time for signals to propagate through the transistors. The 8-bit adder
design above has to wait for all the Cy,,; signals to move from Ay + By up to the inputs of X5.

If a designer builds an 8-bit adder as a complete device simplified to a sum of products, then
each signal just travels through one NOT gate, one AND gate and one OR gate. A seventeen
input device has a truth table with 131,072 entries, and reducing 131,072 entries to a sum of
products will take some time.

When designing for systems that have a maximum allowed response time to provide the
final result, you can begin by using simpler circuits and then attempt to replace portions of the
circuit that are too slow. That way you spend most of your time on the portions of a circuit that
matter.
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9.4 Decoder

A decoder is a circuit that changes a code into a set of signals. It is called a decoder because
it does the reverse of encoding, but we will begin our study of encoders and decoders with
decoders because they are simpler to design.

A common type of decoder is the line decoder which takes an n-digit binary number and
decodes it into 2™ data lines. The simplest is the 1-to-2 line decoder. The truth table is

ATD, D,
olo [1
1]1 |o

A is the address and D is the dataline. Dy is NOT A and D, is A. The circuit looks like

A—c-l>o— Do

| D

N\ /
/?\

Developed into a circuit it looks like
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Larger line decoders can be designed in a similar fashion, but just like with the binary
adder there is a way to make larger decoders by combining smaller decoders. An alternate
circuit for the 2-to-4 line decoder is
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AO_ 1-to-2
Decoder |_—}—

Al_ 1-to-2 %5
Decoder [}

UV

Replacing the 1-to-2 Decoders with their circuits will show that both circuits are equivalent.
In a similar fashion a 3-to-8 line decoder can be made from a 1-to-2 line decoder and a 2-to-4
line decoder, and a 4-to-16 line decoder can be made from two 2-to-4 line decoders.

You might also consider making a 2-to-4 decoder ladder from 1-to-2 decoder ladders. If you
do it might look something like this:
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For some logic it may be required to build up logic like this. For an eight-bit adder we only
know how to sum eight bits by summing one bit at a time. Usually it is easier to design ladder
logic from boolean equations or truth tables rather than design logic gates and then "translate”
that into ladder logic.

A typical application of a line decoder circuit is to select among multiple devices. A circuit
needing to select among sixteen devices could have sixteen control lines to select which device
should "listen”. With a decoder only four control lines are needed.
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9.5 Encoder

An encoder is a circuit that changes a set of signals into a code. Lets begin making a 2-to-1 line
encoder truth table by reversing the 1-to-2 decoder truth table.

D,[Dy[ A
0|10
1| 0[1

table.

This truth table is a little short. A complete truth table would be

D[ A

o

[EEY

il ol lelieliy)
-

0
1
0
1

One question we need to answer is what to do with those other inputs? Do we ignore them?
Do we have them generate an additional error output? In many circuits this problem is solved
by adding sequential logic in order to know not just what input is active but also which order
the inputs became active.

A more useful application of combinational encoder design is a binary to 7-segment encoder.
The seven segments are given according

Do

D, D>
D

D, D.
D

Our truth table is:
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I, [1, [1; [I, [De] Ds|D,]Ds|D,[D,[D,
olofof|of1|1|1]|o]f1|1]2
olo|oj1|o|of1]|o|o]1 |0
olof1|of1|0of1]|1]1]0]1
olof1|1|1|of1]|1]o|1]1
ol1|ojo|o|1|1]|1|0]1 |0
ol1(of1|1|1|o]|1]o|1]1
ol1(1|of1|2lo|1]1|1]2
ol1(1|1]1|of1]|olo|1]oO
1|ojofo|1 |11 1112
1|ojof1|1]1]1|1]o]1|1

Deciding what to do with the remaining six entries of the truth table is easier with this
circuit. This circuit should not be expected to encode an undefined combination of inputs, so
we can leave them as “don’t care” when we design the circuit. The boolean equations are

Do = lg + Iy + lslolyly + lsl,l410

Dy = lg + Ll + Ll + Lol

Dy, = I, + Islolylg + Isllyl,

Dy =ly+ Iyl + 1,1y

D, = lyly + Lol

Ds=1l3+1,+1g

Do = Ig + Iylg + Igloly + I3hl1lo + 1315l g

and the circuit is

(See Figure 9.1.)
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Figure 9.1: Seven-segment decoder gate level diagram.
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9.6 Demultiplexers

A demultiplexer, sometimes abbreviated dmux, is a circuit that has one input and more than
one output. It is used when a circuit wishes to send a signal to one of many devices. This
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description sounds similar to the description given for a decoder, but a decoder is used to select
among many devices while a demultiplexer is used to send a signal among many devices.

A demultiplexer is used often enough that it has its own schematic symbol

The truth table for a 1-to-2 demultiplexer is

I

0
0
1
1

R ol k| o >
o| | o|o|lo
| ol o| ol o

Using our 1-to-2 decoder as part of the circuit, we can express this circuit easily

—

1-to-2 line
decoder

O
=
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This circuit can be expanded two different ways. You can increase the number of signals
that get transmitted, or you can increase the number of inputs that get passed through. To
increase the number of inputs that get passed through just requires a larger line decoder.
Increasing the number of signals that get transmitted is even easier.

As an example, a device that passes one set of two signals among four signals is a "two-bit
1-to-2 demultiplexer”. Its circuit is

lo

Dy

UV

-
|

UV
UV

JUUC

=

1-t0-2 1-t0-2
decoder | | decoder

A

or by expressing the circuit as
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lo Do
s
|y D,
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|OI A D,
_| | O
A D,
s s
| | N
A D,
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shows that it could be two one-bit 1-to-2 demultiplexers without changing its expected be-
havior.
A 1-to-4 demultiplexer can easily be built from 1-to-2 demultiplexers as follows.
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9.7 Multiplexers

A multiplexer, abbreviated mux, is a device that has multiple inputs and one output.

The schematic symbol for multiplexers is

The truth table for a 2-to-1 multiplexer is

I,|A[D

=

il lelle]llelle
il allellell i dlelle
il el (el el e
llallell il llellelle

Using a 1-to-2 decoder as part of the circuit, we can express this circuit easily.

lo

—

1-to-2 line
decoder

U
-
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Multiplexers can also be expanded with the same naming conventions as demultiplexers. A
4-to-1 multiplexer circuit is

That is the formal definition of a multiplexer. Informally, there is a lot of confusion. Both
demultiplexers and multiplexers have similar names, abbreviations, schematic symbols and
circuits, so confusion is easy. The term multiplexer, and the abbreviation mux, are often used
to also mean a demultiplexer, or a multiplexer and a demultiplexer working together. So when
you hear about a multiplexer, it may mean something quite different.

9.8 Using multiple combinational circuits

As an example of using several circuits together, we are going to make a device that will have
16 inputs, representing a four digit number, to a four digit 7-segment display but using just
one binary-to-7-segment encoder.

First, the overall architecture of our circuit provides what looks like our the description
provided.
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Follow this circuit through and you can confirm that it matches the description given above.
There are 16 primary inputs. There are two more inputs used to select which digit will be
displayed. There are 28 outputs to control the four digit 7-segment display. Only four of the
primary inputs are encoded at a time. You may have noticed a potential question though.

When one of the digits are selected, what do the other three digits display? Review the
circuit for the demultiplexers and notice that any line not selected by the A input is zero. So
the other three digits are blank. We don’t have a problem, only one digit displays at a time.

Let’s get a perspective on just how complex this circuit is by looking at the equivalent ladder
logic.
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Notice how quickly this large circuit was developed from smaller parts. This is true of most
complex circuits: they are composed of smaller parts allowing a designer to abstract away
some complexity and understand the circuit as a whole. Sometimes a designer can even take
components that others have designed and remove the detail design work.

In addition to the added quantity of gates, this design suffers from one additional weakness.
You can only see one display one digit at a time. If there was some way to rotate through the
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four digits quickly, you could have the appearance of all four digits being displayed at the same
time. That is a job for a sequential circuit, which is the subject of the next several chapters.
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Chapter 10

MULTIVIBRATORS
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10.1 Digital logic with feedback

With simple gate and combinational logic circuits, there is a definite output state for any given
input state. Take the truth table of an OR gate, for instance:

299
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A
D Output
B

A| B | Output

0|0 0

0|1 1

1|0 1

111 1

Ll L2
A
:O Output

B

For each of the four possible combinations of input states (0-0, 0-1, 1-0, and 1-1), there is
one, definite, unambiguous output state. Whether we’re dealing with a multitude of cascaded
gates or a single gate, that output state is determined by the truth table(s) for the gate(s) in
the circuit, and nothing else.

However, if we alter this gate circuit so as to give signal feedback from the output to one of
the inputs, strange things begin to happen:
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A
Output
A | Output
0 ?
1
Ll LZ
A CR1
() Output
-/
CR1

We know that if A is 1, the output must be 1, as well. Such is the nature of an OR gate: any
“high” (1) input forces the output “high” (1). If A is "low” (0), however, we cannot guarantee the
logic level or state of the output in our truth table. Since the output feeds back to one of the OR
gate’s inputs, and we know that any 1 input to an OR gates makes the output 1, this circuit
will “latch” in the 1 output state after any time that A is 1. When A is 0, the output could be
either 0 or 1, depending on the circuit’s prior state! The proper way to complete the above truth
table would be to insert the word latch in place of the question mark, showing that the output
maintains its last state when A is 0.

Any digital circuit employing feedback is called a multivibrator. The example we just ex-
plored with the OR gate was a very simple example of what is called a bistable multivibrator. It
is called ”bistable” because it can hold stable in one of fwo possible output states, either 0 or 1.
There are also monostable multivibrators, which have only one stable output state (that other
state being momentary), which we’ll explore later; and astable multivibrators, which have no
stable state (oscillating back and forth between an output of 0 and 1).

A very simple astable multivibrator is an inverter with the output fed directly back to the
input:
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Inverter with feedback

>

Ly Lo

CR1 CR1
/V’ 4R Output
| /

When the input is 0, the output switches to 1. That 1 output gets fed back to the input as a
1. When the input is 1, the output switches to 0. That 0 output gets fed back to the input as a
0, and the cycle repeats itself. The result is a high frequency (several megahertz) oscillator, if
implemented with a solid-state (semiconductor) inverter gate:

If implemented with relay logic, the resulting oscillator will be considerably slower, cycling
at a frequency well within the audio range. The buzzer or vibrator circuit thus formed was
used extensively in early radio circuitry, as a way to convert steady, low-voltage DC power
into pulsating DC power which could then be stepped up in voltage through a transformer to
produce the high voltage necessary for operating the vacuum tube amplifiers. Henry Ford’s
engineers also employed the buzzer/transformer circuit to create continuous high voltage for
operating the spark plugs on Model T automobile engines:

"Model T" high-voltage
ignition coil

2

Borrowing terminology from the old mechanical buzzer (vibrator) circuits, solid-state circuit
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engineers referred to any circuit with two or more vibrators linked together as a multivibrator.
The astable multivibrator mentioned previously, with only one ”vibrator,” is more commonly
implemented with multiple gates, as we’ll see later.

The most interesting and widely used multivibrators are of the bistable variety, so we’ll
explore them in detail now.

10.2 The S-R latch

A bistable multivibrator has two stable states, as indicated by the prefix i in its name. Typi-
cally, one state is referred to as set and the other as reset. The simplest bistable device, there-
fore, is known as a set-reset, or S-R, latch.

To create an S-R latch, we can wire two NOR gates in such a way that the output of one
feeds back to the input of another, and vice versa, like this:

R —
Q SR Q Q
00| latch latch

01 0 1

110 1 0

S Q 111 0 0

The Q and not-Q outputs are supposed to be in opposite states. I say "supposed to” because
making both the S and R inputs equal to 1 results in both Q and not-Q being 0. For this reason,
having both S and R equal to 1 is called an invalid or illegal state for the S-R multivibrator.
Otherwise, making S=1 and R=0 "sets” the multivibrator so that Q=1 and not-Q=0. Conversely,
making R=1 and S=0 "resets” the multivibrator in the opposite state. When S and R are
both equal to 0, the multivibrator’s outputs "latch” in their prior states. Note how the same
multivibrator function can be implemented in ladder logic, with the same results:
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By definition, a condition of Q=1 and not-Q=0 is set. A condition of Q=0 and not-Q=1 is
reset. These terms are universal in describing the output states of any multivibrator circuit.

g
@)

The astute observer will note that the initial power-up condition of either the gate or ladder
variety of S-R latch is such that both gates (coils) start in the de-energized mode. As such,
one would expect that the circuit will start up in an invalid condition, with both Q and not-
Q outputs being in the same state. Actually, this is true! However, the invalid condition is
unstable with both S and R inputs inactive, and the circuit will quickly stabilize in either the
set or reset condition because one gate (or relay) is bound to react a little faster than the other.
If both gates (or coils) were precisely identical, they would oscillate between high and low like
an astable multivibrator upon power-up without ever reaching a point of stability! Fortunately
for cases like this, such a precise match of components is a rare possibility.

It must be noted that although an astable (continually oscillating) condition would be ex-
tremely rare, there will most likely be a cycle or two of oscillation in the above circuit, and the
final state of the circuit (set or reset) after power-up would be unpredictable. The root of the
problem is a race condition between the two relays CR; and CRs.

A race condition occurs when two mutually-exclusive events are simultaneously initiated
through different circuit elements by a single cause. In this case, the circuit elements are
relays CR; and CR,, and their de-energized states are mutually exclusive due to the normally-
closed interlocking contacts. If one relay coil is de-energized, its normally-closed contact will
keep the other coil energized, thus maintaining the circuit in one of two states (set or reset).
Interlocking prevents both relays from latching. However, if both relay coils start in their de-
energized states (such as after the whole circuit has been de-energized and is then powered
up) both relays will "race” to become latched on as they receive power (the ”single cause”)
through the normally-closed contact of the other relay. One of those relays will inevitably
reach that condition before the other, thus opening its normally-closed interlocking contact and
de-energizing the other relay coil. Which relay "wins” this race is dependent on the physical
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characteristics of the relays and not the circuit design, so the designer cannot ensure which
state the circuit will fall into after power-up.

Race conditions should be avoided in circuit design primarily for the unpredictability that
will be created. One way to avoid such a condition is to insert a time-delay relay into the
circuit to disable one of the competing relays for a short time, giving the other one a clear
advantage. In other words, by purposely slowing down the de-energization of one relay, we
ensure that the other relay will always "win” and the race results will always be predictable.
Here is an example of how a time-delay relay might be applied to the above circuit to avoid the
race condition:

L, L,

TD1
Y 1 second
_/

R CR1

| | N

[ _/

CR2

/{l/

I

S CR2

| | /R

[ _/

CR1 TDJ

CR1

+f (1 Q

CR2

74l O— Q

When the circuit powers up, time-delay relay contact TD; in the fifth rung down will delay
closing for 1 second. Having that contact open for 1 second prevents relay CR, from energizing
through contact CR; in its normally-closed state after power-up. Therefore, relay CR; will be
allowed to energize first (with a 1-second head start), thus opening the normally-closed CR;
contact in the fifth rung, preventing CR, from being energized without the S input going active.
The end result is that the circuit powers up cleanly and predictably in the reset state with S=0
and R=0.

It should be mentioned that race conditions are not restricted to relay circuits. Solid-state
logic gate circuits may also suffer from the ill effects of race conditions if improperly designed.
Complex computer programs, for that matter, may also incur race problems if improperly de-
signed. Race problems are a possibility for any sequential system, and may not be discovered
until some time after initial testing of the system. They can be very difficult problems to detect
and eliminate.

A practical application of an S-R latch circuit might be for starting and stopping a motor,
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using normally-open, momentary pushbutton switch contacts for both start (S) and stop (R)
switches, then energizing a motor contactor with either a CR; or CR5 contact (or using a con-
tactor in place of CR; or CR;). Normally, a much simpler ladder logic circuit is employed, such
as this:

Ly L,

Start Stop CR1

Y Motor "on"
A

In the above motor start/stop circuit, the CR; contact in parallel with the start switch con-
tact is referred to as a "seal-in” contact, because it “seals” or latches control relay CR; in the
energized state after the start switch has been released. To break the ”seal,” or to "unlatch”
or "reset” the circuit, the stop pushbutton is pressed, which de-energizes CR; and restores the
seal-in contact to its normally open status. Notice, however, that this circuit performs much the
same function as the S-R latch. Also note that this circuit has no inherent instability problem
(if even a remote possibility) as does the double-relay S-R latch design.

In semiconductor form, S-R latches come in prepackaged units so that you don’t have to
build them from individual gates. They are symbolized as such:

S Q

R Q.

e REVIEW:
e A bistable multivibrator is one with two stable output states.

e In a bistable multivibrator, the condition of Q=1 and not-Q=0 is defined as set. A condition
of Q=0 and not-Q=1 is conversely defined as reset. If Q and not-Q happen to be forced to
the same state (both O or both 1), that state is referred to as invalid.

e In an S-R latch, activation of the S input sets the circuit, while activation of the R input
resets the circuit. If both S and R inputs are activated simultaneously, the circuit will be
in an invalid condition.
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e A race condition is a state in a sequential system where two mutually-exclusive events
are simultaneously initiated by a single cause.

10.3 The gated S-R latch

It is sometimes useful in logic circuits to have a multivibrator which changes state only when
certain conditions are met, regardless of its S and R input states. The conditional input is
called the enable, and is symbolized by the letter E. Study the following example to see how
this works:

E|IS|R Q Q

R— 0(0|0] latch latch
Q 0|01 latch latch

0|1]|0| latch latch

E Of1(1] latch latch
1]10|0]| latch latch

Q 1101 0 1

S — 1|10 1 0
1111 0 0

When the E=0, the outputs of the two AND gates are forced to 0, regardless of the states of
either S or R. Consequently, the circuit behaves as though S and R were both 0, latching the
Q and not-Q outputs in their last states. Only when the enable input is activated (1) will the
latch respond to the S and R inputs. Note the identical function in ladder logic:

L, L,
R E CR1
— | O E[S[R[ @ | @
CR2 0|0(0]| latch latch
% 0|01 latch latch
S E CR2 010 latch latch
,_i I I I O 0|11 latch latch
1{0|0| latch latch
?Rl 1101 0 1
A/IY 11110 1 0
CR1 . 1]1[2] o 0
¥F O—1 Q
CR2

NC
@
Q|
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A practical application of this might be the same motor control circuit (with two normally-
open pushbutton switches for start and stop), except with the addition of a master lockout input
(E) that disables both pushbuttons from having control over the motor when it’s low (0).

Once again, these multivibrator circuits are available as prepackaged semiconductor de-
vices, and are symbolized as such:

Q

Q

o_

[ |m o

It is also common to see the enable input designated by the letters "EN” instead of just "E.”

e REVIEW:

e The enable input on a multivibrator must be activated for either S or R inputs to have
any effect on the output state.

e This enable input is sometimes labeled "E”, and other times as "EN”.

10.4 The D latch

Since the enable input on a gated S-R latch provides a way to latch the Q and not-Q outputs
without regard to the status of S or R, we can eliminate one of those inputs to create a multi-
vibrator latch circuit with no ”illegal” input states. Such a circuit is called a D latch, and its
internal logic looks like this:

> _

Q E[D| Q Q
0|0 latch latch
E 0(1| latch latch
1|0 0 1
Q 1|1 1 0
D

Note that the R input has been replaced with the complement (inversion) of the old S input,
and the S input has been renamed to D. As with the gated S-R latch, the D latch will not
respond to a signal input if the enable input is 0 — it simply stays latched in its last state.
When the enable input is 1, however, the Q output follows the D input.

Since the R input of the S-R circuitry has been done away with, this latch has no "invalid”
or 7illegal” state. Q and not-Q are always opposite of one another. If the above diagram is
confusing at all, the next diagram should make the concept simpler:
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D, S Q.
£ E
R Q

Like both the S-R and gated S-R latches, the D latch circuit may be found as its own
prepackaged circuit, complete with a standard symbol:

_D Q
_E|
Q.

The D latch is nothing more than a gated S-R latch with an inverter added to make R the
complement (inverse) of S. Let’s explore the ladder logic equivalent of a D latch, modified from
the basic ladder diagram of an S-R latch:

D E CR1
w4l O
CR2
| —
/IY E|ID| Q Q
D E CR2 0|0| Ilatch latch
>—| I I I O 0|1 latch latch
% 1(1 1 0
CR1
48 O @
CR2

I Y o)
i M Q
An application for the D latch is a 1-bit memory circuit. You can "write” (store) a 0 or 1 bit
in this latch circuit by making the enable input high (1) and setting D to whatever you want
the stored bit to be. When the enable input is made low (0), the latch ignores the status of

the D input and merrily holds the stored bit value, outputting at the stored value at Q, and its
inverse on output not-Q.
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e REVIEW:

e A D latch is like an S-R latch with only one input: the "D” input. Activating the D input
sets the circuit, and de-activating the D input resets the circuit. Of course, this is only
if the enable input (E) is activated as well. Otherwise, the output(s) will be latched,
unresponsive to the state of the D input.

e D latches can be used as 1-bit memory circuits, storing either a "high” or a “low” state
when disabled, and "reading” new data from the D input when enabled.

10.5 Edge-triggered latches: Flip-Flops

So far, we’ve studied both S-R and D latch circuits with an enable inputs. The latch responds
to the data inputs (S-R or D) only when the enable input is activated. In many digital appli-
cations, however, it is desirable to limit the responsiveness of a latch circuit to a very short
period of time instead of the entire duration that the enabling input is activated. One method
of enabling a multivibrator circuit is called edge triggering, where the circuit’s data inputs have
control only during the time that the enable input is transitioning from one state to another.
Let’s compare timing diagrams for a normal D latch versus one that is edge-triggered:

Regular D-latch response

D [ 1 [ [ [
L

E I I

Outputs respond to input (D)
during these time periods
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Positive edge-triggered D-latch response

D 111 [

E 1 | N
Q li
Q I

Outputs respond to input (D)
only when enable signal transitions
from low to high

In the first timing diagram, the outputs respond to input D whenever the enable (E) input
is high, for however long it remains high. When the enable signal falls back to a low state, the
circuit remains latched. In the second timing diagram, we note a distinctly different response
in the circuit output(s): it only responds to the D input during that brief moment of time when
the enable signal changes, or transitions, from low to high. This is known as positive edge-
triggering.

There is such a thing as negative edge triggering as well, and it produces the following
response to the same input signals:

Negative edge-triggered D-latch response

D [ 1 [ [ 1

E [ [ L] L
Q | I S
Q I r

Outputs respond to input (D)
only when enable signal transitions
from high to low

Whenever we enable a multivibrator circuit on the transitional edge of a square-wave en-
able signal, we call it a flip-flop instead of a latch. Consequently, and edge-triggered S-R circuit
is more properly known as an S-R flip-flop, and an edge-triggered D circuit as a D flip-flop. The
enable signal is renamed to be the clock signal. Also, we refer to the data inputs (S, R, and D,
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respectively) of these flip-flops as synchronous inputs, because they have effect only at the time
of the clock pulse edge (transition), thereby synchronizing any output changes with that clock
pulse, rather than at the whim of the data inputs.

But, how do we actually accomplish this edge-triggering? To create a "gated” S-R latch from
a regular S-R latch is easy enough with a couple of AND gates, but how do we implement logic
that only pays attention to the rising or falling edge of a changing digital signal? What we need
is a digital circuit that outputs a brief pulse whenever the input is activated for an arbitrary
period of time, and we can use the output of this circuit to briefly enable the latch. We're
getting a little ahead of ourselves here, but this is actually a kind of monostable multivibrator,
which for now we'll call a pulse detector.

Input | pulse detector
circuit

Output

BN
%
e

lnput I [ L[| L]

Output | | | | |

The duration of each output pulse is set by components in the pulse circuit itself. In ladder
logic, this can be accomplished quite easily through the use of a time-delay relay with a very
short delay time:

I-1 I-2
Input TD1
| | )
| -/
TD1 Input

—'I‘—{ I :O/ Output

Implementing this timing function with semiconductor components is actually quite easy,
as it exploits the inherent time delay within every logic gate (known as propagation delay).
What we do is take an input signal and split it up two ways, then place a gate or a series
of gates in one of those signal paths just to delay it a bit, then have both the original signal
and its delayed counterpart enter into a two-input gate that outputs a high signal for the brief
moment of time that the delayed signal has not yet caught up to the low-to-high change in
the non-delayed signal. An example circuit for producing a clock pulse on a low-to-high input
signal transition is shown here:
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Input '
pu D D D } Output

Delayed input

Input 1

Delayed input — ]

Output M

—> ——Brief period of time when
both inputs of the AND gate
are high

This circuit may be converted into a negative-edge pulse detector circuit with only a change
of the final gate from AND to NOR:

Input ’
P D D D ) »o— Output

Delayed input

Input

Delayed input— 1 ]

Output M

e
Brief period of time when
both inputs of the NOR gate
are low

Now that we know how a pulse detector can be made, we can show it attached to the enable
input of a latch to turn it into a flip-flop. In this case, the circuit is a S-R flip-flop:

C|S|R Q Q

R T|0f{o]| latch latch

Q I|0(1 0 1

Il11|0 1 0

c —| Pulse I{1{1| o 0
detector

x|[0]0| latch latch

Q x|[0]1]| latch latch

s x|[1]0]| latch latch

x|[1]1]| latch latch

Only when the clock signal (C) is transitioning from low to high is the circuit responsive to
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the S and R inputs. For any other condition of the clock signal ("x”) the circuit will be latched.
A ladder logic version of the S-R flip-flop is shown here:

L, L,
C TD1
| | M
| /
TD1 C CR3
| 0
R CRS3 CR1
— | O c[S[IR[ @ | ©
CR2 I 10]|0| latch latch
/}/li’ rlol1] o 1
S  CR3 CR2 S R A 0
'_i I | | N I [1]1 0 0
x|0]|0| latch latch
(|3R1 x |01 latch latch
A/IY x|1]|0| latch latch
CR1 x|1|1]| latch latch
¥F O—1 Q
CR2

| Y =
/IY M Q

Relay contact CR3 in the ladder diagram takes the place of the old E contact in the S-R latch
circuit, and is closed only during the short time that both C is closed and time-delay contact
TR, is closed. In either case (gate or ladder circuit), we see that the inputs S and R have no
effect unless C is transitioning from a low (0) to a high (1) state. Otherwise, the flip-flop’s
outputs latch in their previous states.

It is important to note that the invalid state for the S-R flip-flop is maintained only for the
short period of time that the pulse detector circuit allows the latch to be enabled. After that
brief time period has elapsed, the outputs will latch into either the set or the reset state. Once
again, the problem of a race condition manifests itself. With no enable signal, an invalid output
state cannot be maintained. However, the valid "latched” states of the multivibrator — set and
reset — are mutually exclusive to one another. Therefore, the two gates of the multivibrator
circuit will “race” each other for supremacy, and whichever one attains a high output state first
will "win.”

The block symbols for flip-flops are slightly different from that of their respective latch
counterparts:
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_S Q D Q
C C
—P —P
_R Q. Q.

The triangle symbol next to the clock inputs tells us that these are edge-triggered devices,
and consequently that these are flip-flops rather than latches. The symbols above are positive
edge-triggered: that is, they ”clock” on the rising edge (low-to-high transition) of the clock
signal. Negative edge-triggered devices are symbolized with a bubble on the clock input line:

= B
3> 3>
R Q.

Both of the above flip-flops will "clock” on the falling edge (high-to-low transition) of the
clock signal.

e REVIEW:

e A flip-flop is a latch circuit with a "pulse detector” circuit connected to the enable (E)
input, so that it is enabled only for a brief moment on either the rising or falling edge of
a clock pulse.

e Pulse detector circuits may be made from time-delay relays for ladder logic applications,
or from semiconductor gates (exploiting the phenomenon of propagation delay).

10.6 The J-K flip-flop

Another variation on a theme of bistable multivibrators is the J-K flip-flop. Essentially, this is
a modified version of an S-R flip-flop with no ”"invalid” or "illegal” output state. Look closely at
the following diagram to see how this is accomplished:

C|J|K Q Q
I10(0]| latch latch
« - Q 101 0 1
Il11|0 1 0
C— dePtlélgﬁ,r I |1]|1] toggle | toggle
x|[0]0| latch latch
—Q x|[0]1]| latch latch
J x|[1]0]| latch latch
x|[1]1]| latch latch
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What used to be the S and R inputs are now called the J and K inputs, respectively. The
old two-input AND gates have been replaced with 3-input AND gates, and the third input of
each gate receives feedback from the Q and not-Q outputs. What this does for us is permit
the J input to have effect only when the circuit is reset, and permit the K input to have effect
only when the circuit is set. In other words, the two inputs are interlocked, to use a relay logic
term, so that they cannot both be activated simultaneously. If the circuit is set,” the J input
is inhibited by the 0 status of not-Q through the lower AND gate; if the circuit is "reset,” the K
input is inhibited by the 0 status of Q through the upper AND gate.

When both J and K inputs are 1, however, something unique happens. Because of the
selective inhibiting action of those 3-input AND gates, a ”set” state inhibits input J so that the
flip-flop acts as if J=0 while K=1 when in fact both are 1. On the next clock pulse, the outputs
will switch ("toggle”) from set (Q=1 and not-Q=0) to reset (Q=0 and not-Q=1). Conversely, a
“reset” state inhibits input K so that the flip-flop acts as if J=1 and K=0 when in fact both are
1. The next clock pulse toggles the circuit again from reset to set.

See if you can follow this logical sequence with the ladder logic equivalent of the J-K flip-
flop:

L, L,
C TD1
| | Y
[ _/
TD1 C CR3
| | Y
T [ N
K CR3 CR1 CR1
— A O— ek o 5
CR2 (0|0 latch latch
/}/{’ rlol1] o 1
J CR3 CR2 CR2 Jj1j0] 1 0
,_i ,F O | I |1|1] toggle | toggle
CR1 x|0]|0| latch latch
| x[{0]1]| latch latch
A/IY x|1|0]| latch latch
CR1 x|[1{1] latch latch
S
| p Q
CR2
¥F —'a

The end result is that the S-R flip-flop’s "invalid” state is eliminated (along with the race
condition it engendered) and we get a useful feature as a bonus: the ability to toggle between
the two (bistable) output states with every transition of the clock input signal.

There is no such thing as a J-K latch, only J-K flip-flops. Without the edge-triggering of
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the clock input, the circuit would continuously toggle between its two output states when both
J and K were held high (1), making it an astable device instead of a bistable device in that
circumstance. If we want to preserve bistable operation for all combinations of input states,
we must use edge-triggering so that it toggles only when we tell it to, one step (clock pulse) at
a time.

The block symbol for a J-K flip-flop is a whole lot less frightening than its internal circuitry,
and just like the S-R and D flip-flops, J-K flip-flops come in two clock varieties (negative and
positive edge-triggered):

Q J Q

= lo e
V

= Lo
V

Q. Q.

e REVIEW:

e A J-K flip-flop is nothing more than an S-R flip-flop with an added layer of feedback. This
feedback selectively enables one of the two set/reset inputs so that they cannot both carry
an active signal to the multivibrator circuit, thus eliminating the invalid condition.

e When both J and K inputs are activated, and the clock input is pulsed, the outputs (Q and
not-Q) will swap states. That is, the circuit will toggle from a set state to a reset state, or
vice versa.

10.7 Asynchronous flip-flop inputs

The normal data inputs to a flip flop (D, S and R, or J and K) are referred to as synchronous
inputs because they have effect on the outputs (Q and not-Q) only in step, or in sync, with
the clock signal transitions. These extra inputs that I now bring to your attention are called
asynchronous because they can set or reset the flip-flop regardless of the status of the clock
signal. Typically, they're called preset and clear:

PRE PRE PRE
_S) Q D Q J Q.
C C C
—p —p —p
_R Q. QK Q.

CLR CLR CLR
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When the preset input is activated, the flip-flop will be set (Q=1, not-Q=0) regardless of
any of the synchronous inputs or the clock. When the clear input is activated, the flip-flop will
be reset (Q=0, not-Q=1), regardless of any of the synchronous inputs or the clock. So, what
happens if both preset and clear inputs are activated? Surprise, surprise: we get an invalid
state on the output, where Q and not-Q go to the same state, the same as our old friend, the
S-R latch! Preset and clear inputs find use when multiple flip-flops are ganged together to
perform a function on a multi-bit binary word, and a single line is needed to set or reset them
all at once.

Asynchronous inputs, just like synchronous inputs, can be engineered to be active-high or
active-low. If they’re active-low, there will be an inverting bubble at that input lead on the
block symbol, just like the negative edge-trigger clock inputs.

PRE PRE PRE
} } }
_S Q D Q J Q
> > >
R Q. R K Q.
! I
CLR CLR CLR

Sometimes the designations "PRE” and "CLR” will be shown with inversion bars above
them, to further denote the negative logic of these inputs:

PRE PRE PRE
| | |
I R Q Q
—C> —C> —C>
_R Q. QK Q.
1 Al Al
CLR CLR CLR

e REVIEW:

e Asynchronous inputs on a flip-flop have control over the outputs (Q and not-Q) regardless
of clock input status.

e These inputs are called the preset (PRE) and clear (CLR). The preset input drives the
flip-flop to a set state while the clear input drives it to a reset state.
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e It is possible to drive the outputs of a J-K flip-flop to an invalid condition using the asyn-
chronous inputs, because all feedback within the multivibrator circuit is overridden.

10.8 Monostable multivibrators

We've already seen one example of a monostable multivibrator in use: the pulse detector used
within the circuitry of flip-flops, to enable the latch portion for a brief time when the clock
input signal transitions from either low to high or high to low. The pulse detector is classified
as a monostable multivibrator because it has only one stable state. By stable, I mean a state of
output where the device is able to latch or hold to forever, without external prodding. A latch
or flip-flop, being a bistable device, can hold in either the ”set” or "reset” state for an indefinite
period of time. Once it’s set or reset, it will continue to latch in that state unless prompted to
change by an external input. A monostable device, on the other hand, is only able to hold in
one particular state indefinitely. Its other state can only be held momentarily when triggered
by an external input.

A mechanical analogy of a monostable device would be a momentary contact pushbutton
switch, which spring-returns to its normal (stable) position when pressure is removed from its
button actuator. Likewise, a standard wall (toggle) switch, such as the type used to turn lights
on and off in a house, is a bistable device. It can latch in one of two modes: on or off.

All monostable multivibrators are timed devices. That is, their unstable output state will
hold only for a certain minimum amount of time before returning to its stable state. With
semiconductor monostable circuits, this timing function is typically accomplished through the
use of resistors and capacitors, making use of the exponential charging rates of RC circuits. A
comparator is often used to compare the voltage across the charging (or discharging) capacitor
with a steady reference voltage, and the on/off output of the comparator used for a logic signal.
With ladder logic, time delays are accomplished with time-delay relays, which can be con-
structed with semiconductor/RC circuits like that just mentioned, or mechanical delay devices
which impede the immediate motion of the relay’s armature. Note the design and operation of
the pulse detector circuit in ladder logic:

Ly L,

Input TD1

I I | 1 second

TD1 Input

—'I‘—{ I (— output

nput [ 1 1

Output I I M
—} l«— 1 second
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No matter how long the input signal stays high (1), the output remains high for just 1
second of time, then returns to its normal (stable) low state.

For some applications, it is necessary to have a monostable device that outputs a longer
pulse than the input pulse which triggers it. Consider the following ladder logic circuit:

Ly L,
Input TD1
| | (410 seconds
| /
TD1
= O Output
Input I 1
Output [ L L] L
— ~— — — — ~—

10 seconds 10 seconds 10 seconds

When the input contact closes, TD; contact immediately closes, and stays closed for 10
seconds after the input contact opens. No matter how short the input pulse is, the output
stays high (1) for exactly 10 seconds after the input drops low again. This kind of monostable
multivibrator is called a one-shot. More specifically, it is a retriggerable one-shot, because the
timing begins after the input drops to a low state, meaning that multiple input pulses within
10 seconds of each other will maintain a continuous high output:

"Retriggering" action

Input LI

Output | I

10 seconds

One application for a retriggerable one-shot is that of a single mechanical contact de-
bouncer. As you can see from the above timing diagram, the output will remain high despite
“bouncing” of the input signal from a mechanical switch. Of course, in a real-life switch de-
bouncer circuit, you'd probably want to use a time delay of much shorter duration than 10
seconds, as you only need to "debounce” pulses that are in the millisecond range.
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Switch
momentarily
actuated

"Dirty" signal ﬂ

1
+Y —o o One-shot ——
V®A éRpulldown
i DA

"Clean” signal

What if we only wanted a 10 second timed pulse output from a relay logic circuit, regardless
of how many input pulses we received or how long-lived they may be? In that case, we'd have
to couple a pulse-detector circuit to the retriggerable one-shot time delay circuit, like this:

Ly L,

Input TD1

| | | 0.5 second
| ] O

"_'I{—I I_,I{_O_ 10 seconds

TD2 .
% Q Output
Input [T 1 [ L
Output I I I I I I
> ~ > ~ > ~

10 sec. 10 sec. 10 sec.

Time delay relay TD; provides an "on” pulse to time delay relay coil TD, for an arbitrarily
short moment (in this circuit, for at least 0.5 second each time the input contact is actuated).
As soon as TDs is energized, the normally-closed, timed-closed TD> contact in series with it
prevents coil TD, from being re-energized as long as it’s timing out (10 seconds). This effec-
tively makes it unresponsive to any more actuations of the input switch during that 10 second
period.

Only after TD, times out does the normally-closed, timed-closed TD, contact in series with
it allow coil TD; to be energized again. This type of one-shot is called a nonretriggerable one-
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shot.

One-shot multivibrators of both the retriggerable and nonretriggerable variety find wide
application in industry for siren actuation and machine sequencing, where an intermittent
input signal produces an output signal of a set time.

e REVIEW:

e A monostable multivibrator has only one stable output state. The other output state can
only be maintained temporarily.

e Monostable multivibrators, sometimes called one-shots, come in two basic varieties: re-
triggerable and nonretriggerable.

e One-shot circuits with very short time settings may be used to debounce the *dirty” sig-
nals created by mechanical switch contacts.
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w1 INCOMPLETE ***

11.1 Binary count sequence

If we examine a four-bit binary count sequence from 0000 to 1111, a definite pattern will be
evident in the ”oscillations” of the bits between 0 and 1:

323
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0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Note how the least significant bit (LSB) toggles between 0 and 1 for every step in the count
sequence, while each succeeding bit toggles at one-half the frequency of the one before it. The
most significant bit (MSB) only toggles once during the entire sixteen-step count sequence: at
the transition between 7 (0111) and 8 (1000).

If we wanted to design a digital circuit to "count” in four-bit binary, all we would have
to do is design a series of frequency divider circuits, each circuit dividing the frequency of a
square-wave pulse by a factor of 2:

sy O0J1]of1|of1lof1]ofr|of1[of1]0]1]|

0 0j1 1001 1210 O0f1 1|0 OJ1 1

0 00 0f1 11 1/0000J1 11 1]

(MSBy O 0 0 0 00 00f1 111111 1]

J-K flip-flops are ideally suited for this task, because they have the ability to "toggle” their
output state at the command of a clock pulse when both J and K inputs are made "high” (1):
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Vadd
signal B

signal A ) &/
\ ol
@ 9 2

Y

A of1]ofr]ofr|of1|of1]o] 1]

B 0of1 12/0 01 1]/0 0|1 110

If we consider the two signals (A and B) in this circuit to represent two bits of a binary
number, signal A being the LSB and signal B being the MSB, we see that the count sequence
is backward: from 11 to 10 to 01 to 00 and back again to 11. Although it might not be counting
in the direction we might have assumed, at least it counts!

The following sections explore different types of counter circuits, all made with J-K flip-
flops, and all based on the exploitation of that flip-flop’s toggle mode of operation.

e REVIEW:

e Binary count sequences follow a pattern of octave frequency division: the frequency of
oscillation for each bit, from LSB to MSB, follows a divide-by-two pattern. In other words,
the LSB will oscillate at the highest frequency, followed by the next bit at one-half the
LSB’s frequency, and the next bit at one-half the frequency of the bit before it, etc.

e Circuits may be built that "count” in a binary sequence, using J-K flip-flops set up in the
“toggle” mode.

11.2 Asynchronous counters

In the previous section, we saw a circuit using one J-K flip-flop that counted backward in a two-
bit binary sequence, from 11 to 10 to 01 to 00. Since it would be desirable to have a circuit that
could count forward and not just backward, it would be worthwhile to examine a forward count
sequence again and look for more patterns that might indicate how to build such a circuit.
Since we know that binary count sequences follow a pattern of octave (factor of 2) fre-
quency division, and that J-K flip-flop multivibrators set up for the “toggle” mode are capable
of performing this type of frequency division, we can envision a circuit made up of several J-K
flip-flops, cascaded to produce four bits of output. The main problem facing us is to determine
how to connect these flip-flops together so that they toggle at the right times to produce the
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proper binary sequence. Examine the following binary count sequence, paying attention to
patterns preceding the "toggling” of a bit between 0 and 1:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Note that each bit in this four-bit sequence toggles when the bit before it (the bit having a
lesser significance, or place-weight), toggles in a particular direction: from 1 to 0. Small arrows
indicate those points in the sequence where a bit toggles, the head of the arrow pointing to the
previous bit transitioning from a "high” (1) state to a "low” (0) state:

0000
OOQ}
0010
0011
0100
OlQ}
0110
0111
1000
1OQ}
1010
1011
1100
11Q}
1110
1111

Starting with four J-K flip-flops connected in such a way to always be in the "toggle” mode,
we need to determine how to connect the clock inputs in such a way so that each succeeding bit
toggles when the bit before it transitions from 1 to 0. The Q outputs of each flip-flop will serve
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as the respective binary bits of the final, four-bit count:

Q Q Q Q&
vdd vdd vdd Vdd
J Q J Q J Q J Q
> ? C> ? C> ? C>
% L Q K Q. \l Q. \l Q.

If we used flip-flops with negative-edge triggering (bubble symbols on the clock inputs), we
could simply connect the clock input of each flip-flop to the Q output of the flip-flop before it,
so that when the bit before it changes from a 1 to a 0, the "falling edge” of that signal would
“clock” the next flip-flop to toggle the next bit:

A four-bit "up" counter

Q Q Q Q&
Vdd Vdd Vdd Vdd
J Q J Q] J Q J Q
C> C> C> C>
K Q K Q K Q K Q

This circuit would yield the following output waveforms, when “clocked” by a repetitive
source of pulses from an oscillator:

Clock

Q o|1|o|110|1|o|1|o|1|o|1|o|1|o|1|
QOOllOOllOOllOOll

Qoooo|1111|oooo|1111|
N
Q 00000000O0f1 111111 1]

The first flip-flop (the one with the Qg output), has a positive-edge triggered clock input,
so it toggles with each rising edge of the clock signal. Notice how the clock signal in this
example has a duty cycle less than 50%. I've shown the signal in this manner for the purpose of
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demonstrating how the clock signal need not be symmetrical to obtain reliable, "clean” output
bits in our four-bit binary sequence. In the very first flip-flop circuit shown in this chapter, I
used the clock signal itself as one of the output bits. This is a bad practice in counter design,
though, because it necessitates the use of a square wave signal with a 50% duty cycle ("high”
time = "low” time) in order to obtain a count sequence where each and every step pauses for
the same amount of time. Using one J-K flip-flop for each output bit, however, relieves us of
the necessity of having a symmetrical clock signal, allowing the use of practically any variety
of high/low waveform to increment the count sequence.

As indicated by all the other arrows in the pulse diagram, each succeeding output bit is
toggled by the action of the preceding bit transitioning from “high” (1) to low” (0). This is the
pattern necessary to generate an “up” count sequence.

A less obvious solution for generating an "up” sequence using positive-edge triggered flip-
flops is to “clock” each flip-flop using the Q’ output of the preceding flip-flop rather than the Q
output. Since the @ output will always be the exact opposite state of the Q output on a J-K
flip-flop (no invalid states with this type of flip-flop), a high-to-low transition on the Q output
will be accompanied by a low-to-high transition on the Q’ output. In other words, each time the
Q output of a flip-flop transitions from 1 to 0, the Q’ output of the same flip-flop will transition
from 0 to 1, providing the positive-going clock pulse we would need to toggle a positive-edge
triggered flip-flop at the right moment:

A different way of making a four-bit "up" counter

Q@ Q Q Q
vdd vdd vdd vdd

One way we could expand the capabilities of either of these two counter circuits is to regard
the Q outputs as another set of four binary bits. If we examine the pulse diagram for such
a circuit, we see that the Q’ outputs generate a down-counting sequence, while the Q outputs
generate an up-counting sequence:
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ASYNCHRONOUS COUNTERS

A simultaneous "up" and "down" counter

Q Q Q Q
vdd vdd vdd vdd

ol
©l
@l
&l

"Up" count sequence
ojr]|of1|of1|of1]of1]of1]of1]o]1]

0 0f1 10 01 1|0 01 1|10 O0J1 1

0 00 0f1 11 1[0 0001 1 1 1]

000000O0OO0OJ1 111111 1]

"Down" countsequence
1]of1]of1]of1]lof1r]lof1]of1]of1]0]

1 10 0jJ1 1[0 Of1 1|0 Of1 1|0 O

1 11 1]o0 000111 1]l00 0 0]

171111 111|/0000000 0]
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Unfortunately, all of the counter circuits shown thusfar share a common problem: the ripple
effect. This effect is seen in certain types of binary adder and data conversion circuits, and is
due to accumulative propagation delays between cascaded gates. When the Q output of a flip-
flop transitions from 1 to 0, it commands the next flip-flop to toggle. If the next flip-flop toggle
is a transition from 1 to 0, it will command the flip-flop after it to toggle as well, and so on.
However, since there is always some small amount of propagation delay between the command
to toggle (the clock pulse) and the actual toggle response (Q and Q’ outputs changing states),
any subsequent flip-flops to be toggled will toggle some time after the first flip-flop has toggled.
Thus, when multiple bits toggle in a binary count sequence, they will not all toggle at exactly
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the same time:
Pulse diagram showing (exaggerated) propagation delays

Q 0|1|0|1|0|1|0|1|0|1|0|1|0|1|0|1|

QlOOllOOllOOllOOll

QOOOOllllOOOOllll

Q_00000000J1T 1111111

As you can see, the more bits that toggle with a given clock pulse, the more severe the
accumulated delay time from LSB to MSB. When a clock pulse occurs at such a transition
point (say, on the transition from 0111 to 1000), the output bits will "ripple” in sequence from
LSB to MSB, as each succeeding bit toggles and commands the next bit to toggle as well, with
a small amount of propagation delay between each bit toggle. If we take a close-up look at this
effect during the transition from 0111 to 1000, we can see that there will be false output counts
generated in the brief time period that the "ripple” effect takes place:

Count False Count
7 counts
Foobb b
Q 1 00 0O
Q 1 10 0 0
Q 1 1 1|0 0
Q 0 000 1_

Instead of cleanly transitioning from a "0111” output to a ”1000” output, the counter circuit
will very quickly ripple from 0111 to 0110 to 0100 to 0000 to 1000, or from 7 to 6 to 4 to 0 and
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then to 8. This behavior earns the counter circuit the name of ripple counter, or asynchronous
counter.

In many applications, this effect is tolerable, since the ripple happens very, very quickly
(the width of the delays has been exaggerated here as an aid to understanding the effects). If
all we wanted to do was drive a set of light-emitting diodes (LEDs) with the counter’s outputs,
for example, this brief ripple would be of no consequence at all. However, if we wished to
use this counter to drive the ”select” inputs of a multiplexer, index a memory pointer in a
microprocessor (computer) circuit, or perform some other task where false outputs could cause
spurious errors, it would not be acceptable. There is a way to use this type of counter circuit in
applications sensitive to false, ripple-generated outputs, and it involves a principle known as
strobing.

Most decoder and multiplexer circuits are equipped with at least one input called the “en-
able.” The output(s) of such a circuit will be active only when the enable input is made active.
We can use this enable input to strobe the circuit receiving the ripple counter’s output so that
it is disabled (and thus not responding to the counter output) during the brief period of time in
which the counter outputs might be rippling, and enabled only when sufficient time has passed
since the last clock pulse that all rippling will have ceased. In most cases, the strobing signal
can be the same clock pulse that drives the counter circuit:

Receiving circuit

EN

Binary
count
input

Clock signal

Outputs

Vdd Vdd Vdd

Counter circuit

With an active-low Enable input, the receiving circuit will respond to the binary count
of the four-bit counter circuit only when the clock signal is "low.” As soon as the clock pulse
goes “high,” the receiving circuit stops responding to the counter circuit’s output. Since the
counter circuit is positive-edge triggered (as determined by the first flip-flop clock input), all
the counting action takes place on the low-to-high transition of the clock signal, meaning that
the receiving circuit will become disabled just before any toggling occurs on the counter circuit’s
four output bits. The receiving circuit will not become enabled until the clock signal returns
to a low state, which should be a long enough time after all rippling has ceased to be “safe” to
allow the new count to have effect on the receiving circuit. The crucial parameter here is the
clock signal’s "high” time: it must be at least as long as the maximum expected ripple period of
the counter circuit. If not, the clock signal will prematurely enable the receiving circuit, while
some rippling is still taking place.
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Another disadvantage of the asynchronous, or ripple, counter circuit is limited speed. While
all gate circuits are limited in terms of maximum signal frequency, the design of asynchronous
counter circuits compounds this problem by making propagation delays additive. Thus, even if
strobing is used in the receiving circuit, an asynchronous counter circuit cannot be clocked at
any frequency higher than that which allows the greatest possible accumulated propagation
delay to elapse well before the next pulse.

The solution to this problem is a counter circuit that avoids ripple altogether. Such a
counter circuit would eliminate the need to design a ”strobing” feature into whatever digi-
tal circuits use the counter output as an input, and would also enjoy a much greater operating
speed than its asynchronous equivalent. This design of counter circuit is the subject of the next
section.

e REVIEW:

e An "up” counter may be made by connecting the clock inputs of positive-edge triggered
J-K flip-flops to the Q outputs of the preceding flip-flops. Another way is to use negative-
edge triggered flip-flops, connecting the clock inputs to the Q outputs of the preceding
flip-flops. In either case, the J and K inputs of all flip-flops are connected to V.. or Vg, so
as to always be "high.”

e Counter circuits made from cascaded J-K flip-flops where each clock input receives its
pulses from the output of the previous flip-flop invariably exhibit a ripple effect, where
false output counts are generated between some steps of the count sequence. These types
of counter circuits are called asynchronous counters, or ripple counters.

e Strobing is a technique applied to circuits receiving the output of an asynchronous (ripple)
counter, so that the false counts generated during the ripple time will have no ill effect.
Essentially, the enable input of such a circuit is connected to the counter’s clock pulse in
such a way that it is enabled only when the counter outputs are not changing, and will
be disabled during those periods of changing counter outputs where ripple occurs.

11.3 Synchronous counters

A synchronous counter, in contrast to an asynchronous counter, is one whose output bits change
state simultaneously, with no ripple. The only way we can build such a counter circuit from
J-K flip-flops is to connect all the clock inputs together, so that each and every flip-flop receives
the exact same clock pulse at the exact same time:
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Q Q Q Q
')—‘] Q ?—J Q ?—J Q ’)—J Q
S S S S
S T O - U [ - O A -3

Now, the question is, what do we do with the J and K inputs? We know that we still have to
maintain the same divide-by-two frequency pattern in order to count in a binary sequence, and
that this pattern is best achieved utilizing the "toggle” mode of the flip-flop, so the fact that the
J and K inputs must both be (at times) "high” is clear. However, if we simply connect all the
J and K inputs to the positive rail of the power supply as we did in the asynchronous circuit,
this would clearly not work because all the flip-flops would toggle at the same time: with each
and every clock pulse!

This circuit will not function as a counter!

Q Q Q Q
vdd vdd vdd vdd

=1
Vv
%
=1
%
=1
%
=1
%

Let’s examine the four-bit binary counting sequence again, and see if there are any other
patterns that predict the toggling of a bit. Asynchronous counter circuit design is based on the
fact that each bit toggle happens at the same time that the preceding bit toggles from a "high”
to a "low” (from 1 to 0). Since we cannot clock the toggling of a bit based on the toggling of
a previous bit in a synchronous counter circuit (to do so would create a ripple effect) we must
find some other pattern in the counting sequence that can be used to trigger a bit toggle:

Examining the four-bit binary count sequence, another predictive pattern can be seen. No-
tice that just before a bit toggles, all preceding bits are "high:”
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0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
This pattern is also something we can exploit in designing a counter circuit. If we enable
each J-K flip-flop to toggle based on whether or not all preceding flip-flop outputs (Q) are "high,”

we can obtain the same counting sequence as the asynchronous circuit without the ripple effect,
since each flip-flop in this circuit will be clocked at exactly the same time:

A four-bit synchronous "up" counter

Q Q
Vdd
J Q| Q
C
>
LK Q. Q.
This flip-flop This flip-flop This flip-flop This flip-flop
toggles on every toggles only if toggles only if toggles only if
clock pulse Qo is "high" Qo AND Q, Qo AND Q,; AND Q,
are "high" are "high"

The result is a four-bit synchronous "up” counter. Each of the higher-order flip-flops are
made ready to toggle (both J and K inputs "high”) if the Q outputs of all previous flip-flops are
“high.” Otherwise, the J and K inputs for that flip-flop will both be ”low,” placing it into the
“latch” mode where it will maintain its present output state at the next clock pulse. Since the
first (LSB) flip-flop needs to toggle at every clock pulse, its J and K inputs are connected to V..
or Vg4, where they will be "high” all the time. The next flip-flop need only "recognize” that the
first flip-flop’s Q output is high to be made ready to toggle, so no AND gate is needed. However,
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the remaining flip-flops should be made ready to toggle only when all lower-order output bits
are “high,” thus the need for AND gates.

To make a synchronous "down” counter, we need to build the circuit to recognize the appro-
priate bit patterns predicting each toggle state while counting down. Not surprisingly, when
we examine the four-bit binary count sequence, we see that all preceding bits are "low” prior
to a toggle (following the sequence from bottom to top):

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Since each J-K flip-flop comes equipped with a Q” output as well as a Q output, we can use
the Q outputs to enable the toggle mode on each succeeding flip-flop, being that each @ will be
“high” every time that the respective Q is "low:”
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A four-bit synchronous "down" counter

Q Q Q Q
Vdd
J Q ] Q J Q J Q
c c L L
> > > >
LK Q }i Q.
This flip-flop This flip-flop This flip-flop This flip-flop
toggles on every toggles only if toggles only if toggles only if
clock pulse Q, is "high" Q, AND Q; Q, AND Q; AND G,
are "high" are "high"

Taking this idea one step further, we can build a counter circuit with selectable between
“up” and “down” count modes by having dual lines of AND gates detecting the appropriate
bit conditions for an "up” and a "down” counting sequence, respectively, then use OR gates to
combine the AND gate outputs to the J and K inputs of each succeeding flip-flop:

A four-bit synchronous "up/down" counter

Up/Down

This circuit isn’t as complex as it might first appear. The Up/Down control input line simply
enables either the upper string or lower string of AND gates to pass the Q/Q’ outputs to the
succeeding stages of flip-flops. If the Up/Down control line is "high,” the top AND gates become
enabled, and the circuit functions exactly the same as the first ("up”) synchronous counter
circuit shown in this section. If the Up/Down control line is made "low,” the bottom AND gates
become enabled, and the circuit functions identically to the second ("down” counter) circuit
shown in this section.

To illustrate, here is a diagram showing the circuit in the "up” counting mode (all disabled
circuitry shown in grey rather than black):
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Counter in "up” counting mode

<
=y
=%

Here, shown in the "down” counting mode, with the same grey coloring representing dis-
abled circuitry:

Counter in "down" counting mode

vdd vdd Q
\

<]
—

Up/down counter circuits are very useful devices. A common application is in machine
motion control, where devices called rotary shaft encoders convert mechanical rotation into a
series of electrical pulses, these pulses "clocking” a counter circuit to track total motion:

Light sensor Q O Q Qs
(phototransistor) ‘ ‘

N =

LED

—r—"> Counter

Rotary shaft encoder —

As the machine moves, it turns the encoder shaft, making and breaking the light beam
between LED and phototransistor, thereby generating clock pulses to increment the counter
circuit. Thus, the counter integrates, or accumulates, total motion of the shaft, serving as
an electronic indication of how far the machine has moved. If all we care about is tracking
total motion, and do not care to account for changes in the direction of motion, this arrange-
ment will suffice. However, if we wish the counter to increment with one direction of motion
and decrement with the reverse direction of motion, we must use an up/down counter, and an
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encoder/decoding circuit having the ability to discriminate between different directions.

If we re-design the encoder to have two sets of LED/phototransistor pairs, those pairs
aligned such that their square-wave output signals are 90° out of phase with each other, we
have what is known as a quadrature output encoder (the word "quadrature” simply refers to
a 90° angular separation). A phase detection circuit may be made from a D-type flip-flop, to
distinguish a clockwise pulse sequence from a counter-clockwise pulse sequence:

Light sensor Q QA Q Q
(phototransistor) ‘ ‘ ‘ ‘
LED

Q Up/Down
> Counter
Q.
Rotary shaft encoder —

(quadrature output)

When the encoder rotates clockwise, the "D” input signal square-wave will lead the "C”
input square-wave, meaning that the ”D” input will already be "high” when the "C” transitions
from ”low” to "high,” thus setting the D-type flip-flop (making the Q output "high”) with every
clock pulse. A ”high” Q output places the counter into the "Up” count mode, and any clock
pulses received by the clock from the encoder (from either LED) will increment it. Conversely,
when the encoder reverses rotation, the "D” input will lag behind the "C” input waveform,
meaning that it will be "low” when the "C” waveform transitions from "low” to “high,” forcing
the D-type flip-flop into the reset state (making the Q output "low”) with every clock pulse.
This "low” signal commands the counter circuit to decrement with every clock pulse from the
encoder.

This circuit, or something very much like it, is at the heart of every position-measuring
circuit based on a pulse encoder sensor. Such applications are very common in robotics, CNC
machine tool control, and other applications involving the measurement of reversible, mechan-
ical motion.

11.4 Counter modulus
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12.1 Introduction

Shift registers, like counters, are a form of sequential logic. Sequential logic, unlike combina-
tional logic is not only affected by the present inputs, but also, by the prior history. In other
words, sequential logic remembers past events.

Shift registers produce a discrete delay of a digital signal or waveform. A waveform syn-
chronized to a clock, a repeating square wave, is delayed by ”n” discrete clock times, where
”n” is the number of shift register stages. Thus, a four stage shift register delays "data in”

339
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by four clocks to “data out”. The stages in a shift register are delay stages, typically type ”D”
Flip-Flops or type ”JK” Flip-flops.

Formerly, very long (several hundred stages) shift registers served as digital memory. This
obsolete application is reminiscent of the acoustic mercury delay lines used as early computer
memory.

Serial data transmission, over a distance of meters to kilometers, uses shift registers to
convert parallel data to serial form. Serial data communications replaces many slow parallel
data wires with a single serial high speed circuit.

Serial data over shorter distances of tens of centimeters, uses shift registers to get data
into and out of microprocessors. Numerous peripherals, including analog to digital converters,
digital to analog converters, display drivers, and memory, use shift registers to reduce the
amount of wiring in circuit boards.

Some specialized counter circuits actually use shift registers to generate repeating wave-
forms. Longer shift registers, with the help of feedback generate patterns so long that they
look like random noise, pseudo-noise.

Basic shift registers are classified by structure according to the following types:

e Serial-in/serial-out

Parallel-in/serial-out

Serial-in/parallel-out

Universal parallel-in/parallel-out

Ring counter

datain __] |, dataout
clock __,

stage A stageB stageC stage D

Serial-in, serial-out shift register with 4-stages

Above we show a block diagram of a serial-in/serial-out shift register, which is 4-stages long.
Data at the input will be delayed by four clock periods from the input to the output of the shift
register.

Data at "data in”, above, will be present at the Stage A output after the first clock pulse.
After the second pulse stage A data is transfered to stage B output, and “data in” is transfered
to stage A output. After the third clock, stage C is replaced by stage B; stage B is replaced by
stage A; and stage A is replaced by “data in”. After the fourth clock, the data originally present
at "data in” is at stage D, "output”. The first in” data is "first out” as it is shifted from “data
in” to "data out”.
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datain __,| |, dataout

clock __,|

stage A stage B stageC stage D

Parallel-in, serial-out shift register with 4-stages

Data is loaded into all stages at once of a parallel-in/serial-out shift register. The data is
then shifted out via "data out” by clock pulses. Since a 4- stage shift register is shown above,
four clock pulses are required to shift out all of the data. In the diagram above, stage D data
will be present at the "data out” up until the first clock pulse; stage C data will be present
at "data out” between the first clock and the second clock pulse; stage B data will be present
between the second clock and the third clock; and stage A data will be present between the
third and the fourth clock. After the fourth clock pulse and thereafter, successive bits of "data
in” should appear at "data out” of the shift register after a delay of four clock pulses.

If four switches were connected to D 4 through Dp, the status could be read into a micro-
processor using only one data pin and a clock pin. Since adding more switches would require
no additional pins, this approach looks attractive for many inputs.

datain __,| |, dataout
clock __]

stage A stage B stageC stage D

i ' ' :

Qa Qe Qe Qo

Serial-in, parallel-out shift register with 4-stages

Above, four data bits will be shifted in from ”"data in” by four clock pulses and be available
at Q4 through Qp for driving external circuitry such as LEDs, lamps, relay drivers, and horns.

After the first clock, the data at "data in” appears at Q 4. After the second clock, The old
Q. data appears at Qp; Q4 receives next data from “data in”. After the third clock, Qg data is
at Q¢. After the fourth clock, Q- data is at Qp. This stage contains the data first present at
“data in”. The shift register should now contain four data bits.
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Da Ds Dc Dp

i ! ! !
datain __] |, dataout
clock __,|
mode __,|

stage A stage B stage C stage D

. : : :

Qa Qe Qe Qo

Parallel-in, parallel-out shift register with 4-stages

A parallel-in/laralel-out shift register combines the function of the parallel-in, serial-out
shift register with the function of the serial-in, parallel-out shift register to yields the univer-
sal shift register. The "do anything” shifter comes at a price— the increased number of I/O
(Input/Output) pins may reduce the number of stages which can be packaged.

Data presented at D4 through Dp is parallel loaded into the registers. This data at Q4
through Qp may be shifted by the number of pulses presented at the clock input. The shifted
data is available at Q4 through Qp. The "mode” input, which may be more than one input,
controls parallel loading of data from D, through Dp, shifting of data, and the direction of
shifting. There are shift registers which will shift data either left or right.

data out

datair
clock __] _

Qo

stage A stage B stageC stage D

Ring Counter, shift register output fed back to input

If the serial output of a shift register is connected to the serial input, data can be perpetually
shifted around the ring as long as clock pulses are present. If the output is inverted before
being fed back as shown above, we do not have to worry about loading the initial data into the
“ring counter”.

12.2 Serial-in/serial-out shift register

Serial-in, serial-out shift registers delay data by one clock time for each stage. They will store
a bit of data for each register. A serial-in, serial-out shift register may be one to 64 bits in
length, longer if registers or packages are cascaded.

Below is a single stage shift register receiving data which is not synchronized to the register
clock. The “data in” at the D pin of the type D FF (Flip-Flop) does not change levels when the
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clock changes for low to high. We may want to synchronize the data to a system wide clock in
a circuit board to improve the reliability of a digital logic circuit.

datain

_Dj
C
clock —

P> _ daain m )

Data present at clock time is transfered from D to Q.

The obvious point (as compared to the figure below) illustrated above is that whatever "data
in” is present at the D pin of a type D FF is transfered from D to output Q at clock time. Since
our example shift register uses positive edge sensitive storage elements, the output Q follows
the D input when the clock transitions from low to high as shown by the up arrows on the
diagram above. There is no doubt what logic level is present at clock time because the data is
stable well before and after the clock edge. This is seldom the case in multi-stage shift registers.
But, this was an easy example to start with. We are only concerned with the positive, low to
high, clock edge. The falling edge can be ignored. It is very easy to see Q follow D at clock
time above. Compare this to the diagram below where the “data in” appears to change with
the positive clock edge.

it t t

datain _ D Q
clock
c )
clock —p datain
2 Al
Qc ? :

Qw ?

Does the clock t; see a0 or a 1 at data in at D? Which output is correct,
QcorQy?

Since "data in” appears to changes at clock time t; above, what does the type D FF see at
clock time? The short over simplified answer is that it sees the data that was present at D
prior to the clock. That is what is transfered to Q at clock time t;. The correct waveform is Q¢.
At t; Q goes to a zero if it is not already zero. The D register does not see a one until time to,
at which time Q goes high.
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. t; ty ts t,
datain D Q

& Qa 41;\)

_,| |<_ delay of 1 clock
period

C
clock —p

I
o
2
)
=
S—

Data present t, before clock time at D is transfered to Q.

Since data, above, present at D is clocked to Q at clock time, and Q cannot change until the
next clock time, the D FF delays data by one clock period, provided that the data is already
synchronized to the clock. The Q4 waveform is the same as "data in” with a one clock period
delay.

A more detailed look at what the input of the type D Flip-Flop sees at clock time follows.
Refer to the figure below. Since ”data in” appears to changes at clock time (above), we need
further information to determine what the D FF sees. If the "data in” is from another shift
register stage, another same type D FF, we can draw some conclusions based on data sheet
information. Manufacturers of digital logic make available information about their parts in
data sheets, formerly only available in a collection called a data book. Data books are still
available; though, the manufacturer’s web site is the modern source.

clock

datain D /\

< t81>i<1-tH—«>

Q F‘*tp >

Data must be present (ts) before the clock and after(t,,) the clock. Datais
delayed from D to Q by propagation delay (tp)

The following data was extracted from the CD4006b data sheet for operation at 5V pc,
which serves as an example to illustrate timing.

(http://focus.ti.com docs/prod/fol ders/print/cd4006b. htm )
e ts=100ns
o ty=60ns

e tp=200-400ns typ/max
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ts is the setup time, the time data must be present before clock time. In this case data must
be present at D 100ns prior to the clock. Furthermore, the data must be held for hold time
ty=60ns after clock time. These two conditions must be met to reliably clock data from D to Q
of the Flip-Flop.

There is no problem meeting the setup time of 60ns as the data at D has been there for
the whole previous clock period if it comes from another shift register stage. For example, at
a clock frequency of 1 Mhz, the clock period is 1000 us, plenty of time. Data will actually be
present for 1000us prior to the clock, which is much greater than the minimum required tg of
60ns.

The hold time t;=60ns is met because D connected to Q of another stage cannot change any
faster than the propagation delay of the previous stage t p=200ns. Hold time is met as long as
the propagation delay of the previous D FF is greater than the hold time. Data at D driven by
another stage Q will not change any faster than 200ns for the CD4006b.

To summarize, output Q follows input D at nearly clock time if Flip-Flops are cascaded into
a multi-stage shift register.

Qa Qs Qc
datain D] Q D Q D |Q dataout
c c c
Q. Q. Q.

clock

Serial-in, serial-out shift register using type "D" storage elements

Three type D Flip-Flops are cascaded Q to D and the clocks paralleled to form a three stage
shift register above.

_ Qa Qe Qc
datain J Q J Q J | Q data out
< > < > < >
K Q K Q K 36_

clock

Serial-in, serial-out shift register using type "JK" storage elements

Type JK FFs cascaded Q to J, Q to K with clocks in parallel to yield an alternate form of
the shift register above.

A serial-in/serial-out shift register has a clock input, a data input, and a data output from
the last stage. In general, the other stage outputs are not available Otherwise, it would be a
serial-in, parallel-out shift register..
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The waveforms below are applicable to either one of the preceding two versions of the serial-
in, serial-out shift register. The three pairs of arrows show that a three stage shift register
temporarily stores 3-bits of data and delays it by three clock periods from input to output.

t; t t3 ty

clock
datain

Qs “J:
Qe i

At clock time t; a “data in” of 0 is clocked from D to Q of all three stages. In particular, D
of stage A sees a logic 0, which is clocked to Q 4 where it remains until time t,.

At clock time t, a "data in” of 1 is clocked from D to Q4. At stages B and C, a 0, fed from
preceding stages is clocked to Qg and Q.

At clock time t3 a “data in” of 0 is clocked from D to Q4. Q4 goes low and stays low for
the remaining clocks due to "data in” being 0. Qg goes high at t; due to a 1 from the previous
stage. Q¢ is still low after t3 due to a low from the previous stage.

Q¢ finally goes high at clock t; due to the high fed to D from the previous stage Q. All

earlier stages have 0s shifted into them. And, after the next clock pulse at ts, all logic 1s will
have been shifted out, replaced by 0s

12.2.1 Serial-in/serial-out devices

We will take a closer look at the following parts available as integrated circuits, courtesy of
Texas Instruments. For complete device data sheets follow the links.

e CD4006b 18-bit serial-in/ serial-out shift register
(http://focus.ti.com docs/ prod/fol ders/print/cd4006b. ht m )

e CD4031b 64-bit serial-in/ serial-out shift register
(http://focus.ti.com docs/prod/fol ders/print/cd4031b. htm)

e CD4517b dual 64-bit serial-in/ serial-out shift register
(http://focus.ti.com docs/prod/folders/print/cd4517b. htnl)

The following serial-in/ serial-out shift registers are 4000 series CMOS (Complementary
Metal Oxide Semiconductor) family parts. As such, They will accept a Vpp, positive power
supply of 3-Volts to 15-Volts. The Vgg pin is grounded. The maximum frequency of the shift
clock, which varies with Vpp, is a few megahertz. See the full data sheet for details.
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3 CL Vs (pin7)=Gnd, Vpp (pin 14) = +3 t0 +18 Vpe
clock CL

CL and CL to all 18-stages & latch.
1 13 5 D, +4 10

D, Dy+4 [ > | Ds
CL| 2 cL
CL

latch —7
11 CL 8

D, D,+4 |1[D,+5 |2 © [, D,+4 |1[D,+5 |°

4
cL cL|
CL

CD4006b Serial-in/ serial-out shift register

The 18-bit CD4006b consists of two stages of 4-bits and two more stages of 5-bits with a an
output tap at 4-bits. Thus, the 5-bit stages could be used as 4-bit shift registers. To get a full
18-bit shift register the output of one shift register must be cascaded to the input of another
and so on until all stages create a single shift register as shown below.

Dy+4

[ —

—
o LUo

2] B] ] ] ] [0
\%
OCl
Dam YYY——  D+4delayed

CD4006b 18-bit serial-in/ serial-out shift register
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A CD4031 64-bit serial-in/ serial-out shift register is shown below. A number of pins are not
connected (nc). Both Q and Q’ are available from the 64th stage, actually Qg4 and Q’s4. There
is also a Qg4 "delayed” from a half stage which is delayed by half a clock cycle. A major feature
is a data selector which is at the data input to the shift register.

mode control
Vo DAL g Clp

delayed clock out T

c 64-stages Q

° 9
2] 2] [3] [4] Is] [e] [7] [g]
Deta clock "C nc Qu 0Qu Vs

Qg4 delayed
CD4031 64-bit serial-in/ serial-out shift register

2

The ”mode control” selects between two inputs: data 1 and data 2. If "mode control” is high,
data will be selected from “data 2” for input to the shift register. In the case of "mode control”
being logic low, the "data 1” is selected. Examples of this are shown in the two figures below.
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mode control

Data 1 E =logic high
- -
~ Vpp nc nc nc nc CLp
6] [1s] [ua] [rs] [12] [u] [o]
mode c:ontrolI
delayed clock out

) Q

c 64-stages Q
ottty i

U e o &l B T

clock —— Qu| Qu =
Data 2 Vss
B >
clock === ————he———"—
Qss Ml [l
| < 64 clocks | < 64 clocks I

CD4031 64-bit serial-in/ serial-out shift register recirculating data.

The ”"data 2” above is wired to the Qg4 output of the shift register. With "mode control” high,
the Qg4 output is routed back to the shifter data input D. Data will recirculate from output to
input. The data will repeat every 64 clock pulses as shown above. The question that arises is
how did this data pattern get into the shift register in the first place?

VDD
mode control

=logic low
Voo datal i
nc nc e nc ClLp
16] [15] [1a] [13] [i2] [11] fwo] [o]
]

t034 t55 mode control

delayed clock outT
d oc@) _ b Q
data 1 D ¢ s 3
Sl

CD4031 64-bit serial-in/ serial-out shift register load new data at Data 1.
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With "mode control” low, the CD4031 "data 1” is selected for input to the shifter. The output,
Qg4, is not recirculated because the lower data selector gate is disabled. By disabled we mean
that the logic low "mode select” inverted twice to a low at the lower NAND gate prevents it for
passing any signal on the lower pin (data 2) to the gate output. Thus, it is disabled.

\Y
stoipv,, Qs Qs WEs Clg  Qus Qus Ds

sl 5 [7] ol 2] o ol

AL .

TL_(‘;VE 16 32 48 64
D

) WE

ECD 16 2| 48| 64|
= !

] [2] [3] [+ [s] [e] [7] [8]

Q16A Q48A WEA CLA Q64A QSZA DA VSS
GND

CD4517b dual 64-bit serial-in/ serial-out shift register

A CD4517b dual 64-bit shift register is shown above. Note the taps at the 16th, 32nd, and
48th stages. That means that shift registers of those lengths can be configured from one of the
64-bit shifters. Of course, the 64-bit shifters may be cascaded to yield an 80-bit, 96-bit, 112-bit,
or 128-bit shift register. The clock CL 4 and CL g need to be paralleled when cascading the two
shifters. WEp and WE g are grounded for normal shifting operations. The data inputs to the
shift registers A and B are D 4 and D respectively.

Suppose that we require a 16-bit shift register. Can this be configured with the CD4517b?
How about a 64-shift register from the same part?



12.3. PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 351

data in
clock
> Qiep OUL
DD 168 Q4BB = CLS QMB QSZB DB
3 12 11 10 9
T pi |
Y
c \’ . | |
TL_ WE 16 32 48 64
C
D
) WE
D
‘J_c 16 32 48 64
I

8
Q16A Quga ﬂvEA Cla Q64A Q32A EVSS
data in -

clock Qgaa OUL

CD4517b dual 64-bit serial-in/ serial-out shift register, wired for
16-shift register, 64-hit shift register

Above we show A CD4517b wired as a 16-bit shift register for section B. The clock for section
B is CLg. The data is clocked in at CLg. And the data delayed by 16-clocks is picked of off
Qi65. WEg , the write enable, is grounded.

Above we also show the same CD4517b wired as a 64-bit shift register for the independent
section A. The clock for section A is CL 4. The data enters at CL 4. The data delayed by 64-clock
pulses is picked up from Qgs4. WE 4, the write enable for section A, is grounded.

12.3 Parallel-in, serial-out shift register

Parallel-in/ serial-out shift registers do everything that the previous serial-in/ serial-out shift
registers do plus input data to all stages simultaneously. The parallel-in/ serial-out shift reg-
ister stores data, shifts it on a clock by clock basis, and delays it by the number of stages
times the clock period. In addition, parallel-in/ serial-out really means that we can load data
in parallel into all stages before any shifting ever begins. This is a way to convert data from a
parallel format to a serial format. By parallel format we mean that the data bits are present
simultaneously on individual wires, one for each data bit as shown below. By serial format we
mean that the data bits are presented sequentially in time on a single wire or circuit as in the
case of the "data out” on the block diagram below.



352 CHAPTER 12. SHIFT REGISTERS

datain __,| |, dataout

clock __,|

stage A stage B stageC stage D

Parallel-in, serial-out shift register with 4-stages

Below we take a close look at the internal details of a 3-stage parallel-in/ serial-out shift
register. A stage consists of a type D Flip-Flop for storage, and an AND-OR selector to de-
termine whether data will load in parallel, or shift stored data to the right. In general, these
elements will be replicated for the number of stages required. We show three stages due to
space limitations. Four, eight or sixteen bits is normal for real parts.

Da Ds Dc
Qa Qs Qc
D| Q D Q D Q SO
S c —L c| —L c|
b2 2 2
CLK
SHIFT/LD =0

Parallel-in/ serial-out shift register showing parallel load path

Above we show the parallel load path when SHIFT/LD’ is logic low. The upper NAND gates
serving D4 Dp D¢ are enabled, passing data to the D inputs of type D Flip-Flops Q4 Qg D¢
respectively. At the next positive going clock edge, the data will be clocked from D to Q of the
three FFs. Three bits of data will load into Q4 Qg D¢ at the same time.

The type of parallel load just described, where the data loads on a clock pulse is known
as synchronous load because the loading of data is synchronized to the clock. This needs to
be differentiated from asynchronous load where loading is controlled by the preset and clear
pins of the Flip-Flops which does not require the clock. Only one of these load methods is used
within an individual device, the synchronous load being more common in newer devices.

Da Ds Dc
Qa D Qs Qc
Daa D| Q 5 D Q Dec D Q SO
S d | L o | L c
b b b
CLK
SHIFT/LD =1

Parallel-in/ serial-out shift register showing shift path
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The shift path is shown above when SHIFT/LD’ is logic high. The lower AND gates of the
pairs feeding the OR gate are enabled giving us a shift register connection of SI to D4 , Q4
to D, Qp to D¢, Q¢ to SO. Clock pulses will cause data to be right shifted out to SO on
successive pulses.

The waveforms below show both parallel loading of three bits of data and serial shifting of
this data. Parallel data at D4 D D¢ is converted to serial data at SO.

t, ot ot

3 ty
clock m

SHIFT/LD
datain

Qa
Qs
QS0 || ||

Parallel-in/ serial-out shift register load/shift waveforms

What we previously described with words for parallel loading and shifting is now set down
as waveforms above. As an example we present 101 to the parallel inputs D44 Dgg Dcc.
Next, the SHIFT/LD’ goes low enabling loading of data as opposed to shifting of data. It needs
to be low a short time before and after the clock pulse due to setup and hold requirements. It is
considerably wider than it has to be. Though, with synchronous logic it is convenient to make
it wide. We could have made the active low SHIFT/LD’ almost two clocks wide, low almost a
clock before t; and back high just before t3. The important factor is that it needs to be low
around clock time t; to enable parallel loading of the data by the clock.

Note that at t; the data 101 at D4 Dg D¢ is clocked from D to Q of the Flip-Flops as shown
at Q4 Qp Q¢ at time t;. This is the parallel loading of the data synchronous with the clock.
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t, ot ot

3t
clock m
SHIFTILD
datain [\ ]
Dy | 1| \

Dg O
e \l
Qu |

Zi(SO) | \j[q\‘hl |

Parallel-in/ serial-out shift register load/shift waveforms

Now that the data is loaded, we may shift it provided that SHIFT/LD’ is high to enable
shifting, which it is prior to t;. At t; the data 0 at Q¢ is shifted out of SO which is the same as
the Q¢ waveform. It is either shifted into another integrated circuit, or lost if there is nothing
connected to SO. The data at Qp, a 0 is shifted to Q<. The 1 at Q4 is shifted into Qz. With
“data in” a 0, Q4 becomes 0. After to, Q4 Qr Q¢ = 010.

After t3, Q4 Qz Q¢ = 001. This 1, which was originally present at Q4 after t;, is now
present at SO and Q¢. The last data bit is shifted out to an external integrated circuit if it
exists. After t4 all data from the parallel load is gone. At clock t5 we show the shifting in of a
data 1 present on the SI, serial input.

Why provide SI and SO pins on a shift register? These connections allow us to cascade
shift register stages to provide large shifters than available in a single IC (Integrated Circuit)
package. They also allow serial connections to and from other ICs like microprocessors.

12.3.1 Parallel-in/serial-out devices

Let’s take a closer look at parallel-in/ serial-out shift registers available as integrated circuits,
courtesy of Texas Instruments. For complete device data sheets follow these the links.

e SN74ALS166 parallel-in/ serial-out 8-bit shift register, synchronous load
(http://wwws.ti.com sc/ds/sn74al s166. pdf)

e SN74ALS165 parallel-in/ serial-out 8-bit shift register, asynchronous load
(http://wwws.ti.com sc/ds/sn74al s165. pdf)

e CD4014B parallel-in/ serial-out 8-bit shift register, synchronous load
(http://ww«+s.ti.conm sc/ds/cd4014b. pdf)
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e SN74LS647 parallel-in/ serial-out 16-bit shift register, synchronous load
(http://ww+s.ti.com sc/ds/sn74l s674. pdf)

Q
[
=
Lol
[l
Lol

SN74ALS166 Parallel-in/ serial-out 8-bit shift register

The SN74ALS166 shown above is the closest match of an actual part to the previous parallel-
in/ serial out shifter figures. Let us note the minor changes to our figure above. First of all,
there are 8-stages. We only show three. All 8-stages are shown on the data sheet available
at the link above. The manufacturer labels the data inputs A, B, C, and so on to H. The
SHIFT/LOAD control is called SH/LD’. It is abbreviated from our previous terminology, but
works the same: parallel load if low, shift if high. The shift input (serial data in) is SER on the
ALS166 instead of SI. The clock CLK is controlled by an inhibit signal, CLKINH. If CLKINH
is high, the clock is inhibited, or disabled. Otherwise, this "real part” is the same as what we
have looked at in detail.

=5 o
CLKINH -8 o1
ck —L > C3/1—3—
1 I C
SER 1,3D
A =2 2,3D
B 2 2,3D
c _4
b _5
£ 10
o
G 12
g 14 B o,

SN74ALS166 ANSI Symbol

Above is the ANSI (American National Standards Institute) symbol for the SN74ALS166
as provided on the data sheet. Once we know how the part operates, it is convenient to hide
the details within a symbol. There are many general forms of symbols. The advantage of the
ANSI symbol is that the labels provide hints about how the part operates.
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The large notched block at the top of the *74ASL166 is the control section of the ANSI
symbol. There is a reset indicted by R. There are three control signals: M1 (Shift), M2 (Load),
and C3/1 (arrow) (inhibited clock). The clock has two functions. First, C3 for shifting parallel
data wherever a prefix of 3 appears. Second, whenever M1 is asserted, as indicated by the 1
of C3/1 (arrow), the data is shifted as indicated by the right pointing arrow. The slash (/) is
a separator between these two functions. The 8-shift stages, as indicated by title SRGS8, are
identified by the external inputs A, B, C, to H. The internal 2, 3D indicates that data, D, is
controlled by M2 [Load] and C3 clock. In this case, we can conclude that the parallel data is
loaded synchronously with the clock C3. The upper stage at A is a wider block than the others
to accommodate the input SER. The legend 1, 3D implies that SER is controlled by M1 [Shift]
and C3 clock. Thus, we expect to clock in data at SER when shifting as opposed to parallel
loading.

I =3 N N - ) T & T &~

ANSI gate symbols

The ANSI/IEEE basic gate rectangular symbols are provided above for comparison to the
more familiar shape symbols so that we may decipher the meaning of the symbology associated
with the CLKINH and CLK pins on the previous ANSI SN74ALS166 symbol. The CLK and
CLKINH feed an OR gate on the SN74ALS166 ANSI symbol. OR is indicated by => on the
rectangular inset symbol. The long triangle at the output indicates a clock. If there was a
bubble with the arrow this would have indicated shift on negative clock edge (high to low).
Since there is no bubble with the clock arrow, the register shifts on the positive (low to high
transition) clock edge. The long arrow, after the legend C3/1 pointing right indicates shift
right, which is down the symbol.
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B H
SH/LD Dc ‘ ‘
j Qa j Qs ﬂ Qu
SER D Q D[ s Q D[ s Q
C C C

R

CLK

CLKINH )
SN74ALS165 Parallel-in/ serial-out 8-bit shift register,
asynchronous load

|

7
o
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Part of the internal logic of the SN74ALS165 parallel-in/ serial-out, asynchronous load shift
register is reproduced from the data sheet above. See the link at the beginning of this section
the for the full diagram. We have not looked at asynchronous loading of data up to this point.
First of all, the loading is accomplished by application of appropriate signals to the Set (preset)
and Reset (clear) inputs of the Flip-Flops. The upper NAND gates feed the Set pins of the
FFs and also cascades into the lower NAND gate feeding the Reset pins of the FFs. The lower
NAND gate inverts the signal in going from the Set pin to the Reset pin.

First, SH/LD’ must be pulled Low to enable the upper and lower NAND gates. If SH/LD’
were at a logic high instead, the inverter feeding a logic low to all NAND gates would force
a High out, releasing the "active low” Set and Reset pins of all FFs. There would be no
possibility of loading the FFs.

With SH/LD’ held Low, we can feed, for example, a data 1 to parallel input A, which inverts
to a zero at the upper NAND gate output, setting FF Q4 to a 1. The 0 at the Set pin is fed
to the lower NAND gate where it is inverted to a 1 , releasing the Reset pin of Q 4. Thus, a
data A=1 sets Q4=1. Since none of this required the clock, the loading is asynchronous with
respect to the clock. We use an asynchronous loading shift register if we cannot wait for a clock
to parallel load data, or if it is inconvenient to generate a single clock pulse.

The only difference in feeding a data 0 to parallel input A is that it inverts to a 1 out of the
upper gate releasing Set. This 1 at Set is inverted to a 0 at the lower gate, pulling Reset to a
Low, which resets Q 4=0.
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o SRGS8
SHID —L—~fc1[LOAD]
CLKINH 23 -1
cLk -2 = BC2
I C
ser 10 D

1D

1D

IO@TMmMOOwW>»
'

1D

SN74ALS165 ANSI Symbol

The ANSI symbol for the SN74ALS166 above has two internal controls C1 [LOAD] and C2
clock from the OR function of (CLKINH, CLK). SRGS8 says 8-stage shifter. The arrow after C2
indicates shifting right or down. SER input is a function of the clock as indicated by internal
label 2D. The parallel data inputs A, B, C to H are a function of C1 [LOAD], indicated by
internal label 1D. C1 is asserted when sh/LD’ =0 due to the half-arrow inverter at the input.
Compare this to the control of the parallel data inputs by the clock of the previous synchronous
ANSI SN75ALS166. Note the differences in the ANSI Data labels.

. SRG8
LD/SH M1 [Shift]
E M2 [Load]
ok O~ czr—
] |_
ser 1 [13D
pi——12 3p
% 153p
P35
pa—2
ps 13
P6 14 2 Qs
12
p7—12 Q
P8 L 2,3D 3 Qs

CD4014B, synchronous load

SRG8
LD/SH -2 C1 [Load]

ok 20 1>l coy—o

SER 11 2|D =
p1—{1D
p2-8 1D
P35
ps-2
ps13
P614 2 Qs
p7iS 2 g
P8 L 1D Yo}

CD4021B, asynchronous load

CMOS Parallel-in/ serial-out shift registers, 8-bit ANSI symbols
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On the CD4014B above, M1 is asserted when LD/SH’=0. M2 is asserted when LD/SH’=1.
Clock C3/1 is used for parallel loading data at 2, 3D when M2 is active as indicated by the 2,3
prefix labels. Pins P3 to P7 are understood to have the smae internal 2,3 prefix labels as P2
and P8. At SER, the 1,3D prefix implies that M1 and clock C3 are necessary to input serial
data. Right shifting takes place when M1 active is as indicated by the 1 in C3/1 arrow.

The CD4021B is a similar part except for asynchronous parallel loading of data as implied
by the lack of any 2 prefix in the data label 1D for pins P1, P2, to P8. Of course, prefix 2 in
label 2